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ABSTRACT. In this paper we will consider the Allee effect on a symbiotic population system

with herd behaviour. Criteria for stability of equilibrium points are derived. The effect of discrete

time-delay on the model is investigated. Computer simulation of various solutions is presented to

illustrate our mathematical findings. The biological implications of our analytical and numerical

findings are discussed critically.
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1. INTRODUCTION

Symbiotic relationship is a most widespread phenomenon that is very common in

nature. In this relationship, the organisms live together and influence their mutual

livelihoods. Symbiotic relationship may be obligate or facultative. In obligate sym-

biosis, two organisms cannot survive without each other. In facultative symbiosis,

the species live together by choice.

So far as the growth of a single-species population is concerned, it has long been

recognised that the famous logistic growth function is a logical choice. The function

is introduced in 1838 by the Belgian mathematician Pierre Francois Verhulst [42]

and later it is rediscovered in 1920 by American biologists Reymon Pearl and Lowell

Reed [36]. If x(t) denotes the population density at time t, then the logistic growth

equation is given by

(1.1)
dx

dt
= rx

(

1 − x

k

)

,

where r is the intrinsic per capita growth rate and k is the carrying capacity of the

environment. The logic behind this is very simple. As the resources (e.g., space,
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food, essential nutrients) are limited, every population grows into a saturated phase

from which it cannot grow further; the ecological habitat of the population can carry

just so much of it and no more. This suggests that the per capita growth rate is a

decreasing function of the size of the population, and reaches zero as the population

achieved a size k (in the saturated phase). Further, any population reaching a size

that is above this value will experience a negative growth rate. The term −rx2/k

may also be regarded as the loss due to symbiotic population. Although logistic

growth function became extremely popular, but, in real life situations, researchers

found many evidences where the populations show a reverse trend in low population

density [13, 18, 21, 22, 34, 37]. This phenomenon of positive density dependence of

population growth at low densities is known as the Allee effect [40, 22].

The phenomenon of Allee effect is named after the US Behavioral scientist Warder

Clyde Allee (although Allee never used the term ‘Allee effect’). Allee described this

concept in three of his papers [4, 5, 6]. Actually, the term ‘Allee effect’ was introduced

by Odum [35]. Since the late eighties of the 20th century, the concept gained impor-

tance but there were necessity of clear-cut definitions and clarification of concepts.

The necessity was fulfilled when three reviews by Stephens et al. [40], Courchamp et

al. [21], Stephens and Sutherland [39]. There are many reasons for Allee effect, such

as difficulty in mate finding, reduced antipredator vigilance, problem of environmen-

tal conditioning, reduced defense against predators, and many others (for thorough

reviews, see references [13, 22]).

The Allee effect can be divided into two main types, depending on how strong the

per capita growth rate is depleted at low population densities. These two types are

called the strong Allee effect [41, 44, 45] or critical depensation [16, 17, 29], and the

weak Allee effect [40, 43] or noncritical depensation [16, 17, 29]. Usually, the Allee

effect is modelled by a growth equation of the form

(1.2)
dx

dt
= rx

(

1 − x

k

)

(x − m) ,

where x(t) denotes the population density at time t, r is the intrinsic per capita growth

rate, and k is the carrying capacity of the environment. Here 0 < m ≪ k. When

m > 0 and the population size is below the threshold level m, then the population

growth rate decreases [8, 19, 23, 27], and the population goes to extinction. In this

case, the equation describes the strong Allee effect [41, 44, 45]. On the contrary,

the description of weak Allee effect is also available (see references [24, 44]). In this

paper, we are concerned with strong Allee effect. The above growth is often said to

have a multiplicative Allee effect. There is another mathematical form of the growth

function featuring the additive Allee effect. In this paper, we are not interested in

additive Allee effect (interested readers might see the works of Aguirre et al. [1, 2]).
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A comparison of the logistic growth function of (1.1) and the function representing

Allee effect in equation (1.2) can be found in [31].

A herd or pack is a social grouping of different animals of the same species. When

a species shows herd behaviour, the individuals of the species show a collective social

behavior, and each individual chooses a behaviour that corresponds to that of the

majority of other members (for example, all moving in the same direction at a given

time). There are several reasons for herd behaviour (see [10, 11, 12, 32, 31] and

references therein).

Now, when a population lives forming groups, then all members of a group do not

interact at a time. There are many reasons for this herd behaviour, such as searching

for food resources, defending the predators, etc. Usually the species, which exhibits

this social behaviour, allows the weakest individuals to occupy the interior of the

herd, leaving the healthier and stronger animals around it. As a consequence, it is

necessary to search for suitable function to describe this social behaviour. Only a few

works have so far tried to enlighten this area. These works demonstrated an ingenious

idea that suitable powers of the state variables can account for the social behaviour

of the populations. For example, to explore the consequence of forming spatial group

of fixed shape by predators, Cosner et al. [20] introduced the idea that the square

root of the predator variable is to be used in the function describing the encounter

rate in two-dimensional systems. Unfortunately, such an idea has not been used by

the researchers for about a decade. The work of Chattopadhyay et al. [15] may be

regarded as a strong recognition of this concept. Then came the most innovative work

of Ajraldi et al. [3], which gave such modelling a new dimension. Their idea is very

interesting. If x is the density of a population that gathers in herds and the herd

occupies an area A, then the number of individuals staying at outermost positions in

the herd is proportional to the length of the perimeter of the patch where the herd

is located. Clearly, its length is proportional to
√

A. Since x is distributed over a

two-dimensional domain,
√

x would therefore count the individuals at the edge of the

patch.

The Lotka-Volterra type mutualism model, where each of the species follows logis-

tic growth dynamics in the absence of the other, is taken as the basis of mathematical

study of symbiotic relationship. The details of the formulation and analysis of this

model can be found in the classical book of Brauer and Castillo-Chavez [14]. Re-

cently, Ajraldi et al. [3] have derived and analyzed a symbiotic model, where one of

the species shows a herd behaviour. In this paper, we have considered a symbiotic

model where one species shows herd behaviour, whereas the other species is subject

to strong Allee effect.
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In recent times, it is well understood that many of the processes, both natural

and manmade, in biology, medicine, et cetera, involve time-delays or time-lags. Time-

delays occur so often, in almost every situation, that to ignore them is to ignore reality.

Kuang [28] mentioned that animals must take time to digest their food before further

activities and responses take place and hence any model of species dynamics without

delays is an approximation at best. Now it is beyond doubt that in an improved

analysis, the effect of time-delay due to the time required in going from egg stage to

the adult stage, gestation period, et cetera, has to be taken into account. Detailed

arguments on importance and usefulness of time-delays in realistic models may be

found in the classical books of Gopalsamy [25], Kuang [28] and MacDonald [30].

Hutchinson [26] pointed out that the logistic equation would be inappropriate for

the description of population growth in the case where there is a time-delay in some

of the processes involved. The delayed logistic equation or Hutchinson’s equation is

one of the first examples of a delay differential equation that has been thoroughly

examined (see for example [7, 25, 28, 30], and the references within).

In this paper, we have considered a two-species symbiotic population model. The

first species displays a herd behaviour. On the other hand, the second species is

vulnerable to Allee effect. The paper is structured as follows. In section 2, the basic

deterministic model (without time-delay) is introduced. In section 3, the behaviours

including positivity, stability of equilibria are discussed. The effect of time-delay

in the logistic growth of the first species is analyzed in section 4. In section 5,

the analytical findings of sections 3 and 4 are verified through computer simulation.

Section 6 contains the general discussions of the paper and biological implications of

our mathematical findings.

2. THE BASIC MATHEMATICAL MODEL

The model we analyze in this paper is composed of two species in symbiotic

relationship. The population densities of the species in time t are denoted by x and

y. Before we introduce the model and dip into the depth of the rigorous analysis,

we would like to present a brief sketch of the construction of the model which may

indicate the biological relevance of it.

1. We assume that the first species (with density x) follows a logistic growth in

the absence of the other species.

2. The second species is subject to a strong Allee effect.

3. There is a symbiotic relationship (or mutualism) between the two species.

4. The first species exhibits a herd behaviour.
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These considerations motivate us to introduce the following prey-predator system

under the framework of the following set of nonlinear ordinary differential equations:

(2.1)

dx

dt
= rx

(

1 − x

k

)

+ a
√

xy, x(0) > 0,

dy

dt
= sy

(

1 − y

c

)

(y − m) + b
√

xy, y(0) > 0.

Here r is the intrinsic growth rate of the first species, k is its carrying capacity. The

parameter s is the intrinsic growth rate of the second species, c is its carrying capacity,

m indicates the Allee threshold for the first species (since the Allee effect is strong,

we have 0 < m ≪ c). The term b
√

xy in the first equation can be thought of as

the contribution made by the second species to the growth rate of the first species.

Similarly, b
√

xy is the contribution in the growth rate of the second species caused

by individuals of the first species.

3. DYNAMICS OF THE MODEL

In this section, we discuss the dynamical behaviours of the system (2.1). We first

notice the positivity of solutions.

3.1. Positivity of solutions.

Theorem 3.1. All solutions of the system (2.1) that start in R
2
+ remain positive

forever.

The proof is simple and therefore it is omitted.

3.2. Equilibria. In this section, we find the equilibrium points of the system (2.1)

and study their stability. The eqilibrium points and the conditions of their existence

are given in the following lemma.

Lemma 3.2. The trivial equilibrium E0(0, 0) of the system (2.1) always exists. There

are three boundary equilibrium points E1(k, 0), E2(0, c) and E3(0, m), each of which

also exists unconditionally. The first component x∗ of the interior or coexistence

equilibrium E∗(x∗, y∗) exists if and only if the equation

(3.1)
sr2x

a2c

(x

k
− 1

)2

− rs
√

x

a

(

1 +
m

c

)(x

k
− 1

)

− b
√

x + sm = 0

has a positive root. When this condition is satisfied, then x∗ is a positive root of (3.1).

If further, x∗ > k, then y∗ exists and is given by

y∗ =
r
√

x∗

a

(

x∗

k
− 1

)

.
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3.3. Behaviour near the boundary equilibria E0, E2, E3. System (2.1) cannot be

linearized at E0 = (0, 0), E2 = (0, c) and E3 = (0, m), so local stability of E0, E2 and

E3 cannot be studied in the usual way. However, we provide some logical arguments

to understand the behaviours of the system (2.1) near the above equilibrium points.

If the first populations disappears, the system reduces to one equation. In this

circumstance, the surviving population y follows the equation dy

dt
= sy

(

1 − y

c

)

(y−m)

having three equilibrium points 0, m, c. It is well known that the equilibrium points

0 and c are asymptotically stable, and m is unstable. Therefore, if y(0) < m, then

y will approach 0; otherwise it will grow toward its own carrying capacity c. Thus

E2(0, c) is locally asymptotically stable, and E3(0, m) is unstable.

To study the behaviour near E0(0, 0), it is reasonable to assume that x ≪
min{1, k} and y ≪ min 1, m. Then x <

√
x and y <

√
y, and x, y are so small

that, following the approach of Melchionda et al. [33], we have

dx

dt
≈ r

√
x > 0,

dy

dt
≈ s

√
y > 0.

This indicates that the origin is unstable.

3.4. Stability of E1 and E∗. The Jacobian matrix of system (2.1) at an equilibrium

point (x, y) (when x 6= 0) is

J(x, y) =

[

r − 2r
k
x + ay

2
√

x
a
√

x
by

2
√

x
(y − m)(s − 2sy

c
) + sy(1 − y

c
) + b

√
x

]

.

Theorem 3.3. The equilibrium point E1(k, 0) of system is stable if and only if b
√

k−
ms < 0.

Proof. The Jacobian matrix at E1 = (k, 0) is

J(E1) =

[

−r a
√

k

0 b
√

k − ms

]

.

Clearly, its eigenvalues are λ1 = −r and λ2 = b
√

k − ms. Since λ1 < 0, E1 is stable

if and only if λ2 < 0 ⇔ b
√

k − ms < 0. Hence the theorem follows.

The Jacobian matrix at E∗(x∗, y∗) is

J(E∗) =

[

a11 a12

a21 a22

]

,
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where

a11 = r − 2rx∗

k
+

ay∗

2
√

x∗

a12 = a
√

x∗

a21 =
by∗

2
√

x∗

a22 = (y∗ − m)

(

s − 2sy∗

c

)

+ sy∗

(

1 − y∗

c

)

+ b
√

x∗.

The characteristic equation of J(E∗) is

λ2 + Pλ + Q = 0,

where P = −tr J(E∗) = −(a11 + a22) and Q = det J(E∗) = a11a22 − a12a21. Then we

have the following theorem guaranteeing the stability of E∗.

Theorem 3.4. If the equilibrium point E∗(x∗, y∗) exists with P > 0 and Q > 0, then

E∗ is locally asymptotically stable.

Proof. It is easy to notice that, if the conditions of the theorem are satisfied, then all

the eigenvalues of J(E∗) have negative real parts. Hence the theorem follows.

4. EFFECT OF DISCRETE TIME-DELAY

It is mentioned that time-delay is a vital factor in biological systems. In particu-

lar, delay in logistic growth function is extremely important [7, 30, 25, 26, 28, 38]. As

a starting point of this section, we consider the following generalization of the model

(2.1) involving discrete delay:

(4.1)

dx

dt
= rx

[

1 − x(t − τ)

k

]

+ a
√

xy,

dy

dt
= sy

(

1 − y

c

)

(y − m) + b
√

xy.

Here it is assumed that the net per capita rate of change might depend on the state

of the system τ time units in the past [7].

The system (4.1) has the same equilibria as in the previous case. The main

purpose of this section is to study the stability behaviour of E∗(x∗, y∗) in presence of

delay (τ 6= 0).

We linearize the system (4.1) by using the following transformations:

x = x∗ + x1, y = y∗ + y1.

Then the linear system is given by

(4.2)
du

dt
= Au(t) + Bu(t − τ)

where u(t) = [x1 y1]
T , A = (aij)2×2, B = (bij)2×2, and a11 = 0, a12 = 0, a21 = by∗

(2
√

x∗)
,

a22 = (y∗ − m)(s − 2sy∗

c
) + sy∗(1 − y∗

c
) + b

√
x∗, b11 = −rx∗

k
, b12 = 0, b21 = 0, b22 = 0.



156 P. SEN, A. MAITI, AND G. P. SAMANTA

We look for solution of the model (4.2) of the form u(t) = ρeλt, 0 6= ρ ∈ R
2. This

leads to the following characteristic equation:

(4.3) λ2 + a1λ + (a2λ + a3)e
−λτ = 0,

where a1 = −a22, a2 = −b11, a3 = b11a22.

It is well known that the signs of the real parts of the solutions of (4.3) characterize

the stability behaviour of E∗. Therefore, substituting λ = ξ + iη in (4.3), we obtain

real and imaginary parts, respectively, as

(4.4) ξ2 − η2 + a1ξ + [{a2ξ + a3} cos ητ + a2η sin ητ ] e−ξτ = 0,

and

(4.5) 2ξη + a1η + [a2η cos ητ − {a2ξ + a3} sin ητ ] e−ξτ = 0.

A necessary condition for a stability change of E∗ is that the characteristic equation

(4.3) has purely imaginary solutions. Hence to obtain the stability criterion, we set

ξ = 0 in (4.4) and (4.5) to obtain

(4.6) η2 = a3 cos ητ + a2η sin ητ,

and

(4.7) a1η = a3 sin ητ − a2 cos ητ.

Eliminating τ by squaring and adding (4.6) and (4.7), we get the equation for deter-

mining η as

(4.8) η4 + d1η
2 + d2 = 0,

where d1 = a2
1 − a2

2, d2 = −a2
3.

Substituting η2 = σ in (4.8), we get a quadratic equation given by

(4.9) σ2 + d1σ + d2 = 0.

The quadratic (4.9) always has one and only one positive real root. Let σ0 be the

unique positive root of (4.9). So there exist σ0 = η2
0 that satisfy equation (4.8). In

the following theorem, we have given a criterion for switching the stability behaviour

of E∗.

Theorem 4.1. Let E∗(x∗, y∗) exists with P > 0 and Q > 0. Then E∗ is locally

asymptotically stable for 0 ≤ τ < τ ∗, and unstable for τ > τ ∗ and the system exhibits

a hopf bifurcation near E∗ for τ = τ ∗, provided

f(η0) =
1

η0
(a1a3η0 sin η0τ − a1a2η

2
0 cos η0τ + 2a2η

3
0 sin η0τ + 2a3η

2
0 cos η0τ − a2

2η
2
0) > 0,

where

τ ∗ =
1

η0
arcsin

[

η3
0a2 + a1a3η0

a2
3 + a2

2η
2
0

]

.
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Proof. First we note that η0 is a solution of (4.8). Solving (4.6) for cos τη0 and

substituting in (4.7), we find that for τ = τ ∗, the characteristic equation (4.3) have

purely imaginary roots, ±iη0. Again it may be noted that if ±η0 is a solution of (4.6)

and (4.7), then η2
0 is a solution of (4.8). The theorem will be proved if we can show

that
[

dξ

dτ

]

τ=τ∗
> 0. To show this, we differentiate (4.6) and (4.7) with respect to τ

and then set ξ = 0 to obtain

(4.10) C(η)
dξ

dτ
+ D(η)

dη

dτ
= G(η)

and

(4.11) −D(η)
dξ

dτ
+ C(η)

dη

dτ
= H(η),

where

C(η) = a1 + a2 cos ητ − a3τ cos ητ − a2ητ sin ητ

D(η) = −2η − a3τ sin ητ + a2 sin ητ + a2ητ cos ητ

G(η) = a3η sin ητ − a2η
2 cos ητ

H(η) = a2η
2 sin ητ + a3η cos ητ.

Solving (4.10) and (4.11) with τ = τ ∗ and η = η0, we get

[

dξ

dτ

]

τ=τ∗

=
η2

0f(η0)

C2(η0) + D2(η0)
,

which is positive under the condition of the theorem (∵ f(η0) > 0). Hence the

theorem is established.

5. NUMERICAL SIMULATION

Analytical studies can never be complete without numerical verification of the

results. In this section we present computer simulation of different solutions of the

system (2.1) using MATLAB.

First we choose the parameters of the system as a = 2.5, b = 0.4, c = 4.2,

r = 1.2, s = 2.5, k = 3.5, m = 4 and x(0) = 3.5, y(0) = 2.5. Then condition

(−b
√

k + ms = 5.94 > 0) of Theorem 3.3 is satisfied, and as such E1(k, 0) is locally

asymptotically stable. The behaviour of x and y with time is depicted in Figure 1.

Clearly x approaches k = 3.5 and y approaches 0 in finite time.
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Figure 1. Behaviour of x and y with t for the system (2.1) when a = 2.5, b = 0.4,

c = 4.2, r = 1.2, s = 2.5, k = 3.5, m = 4 and x(0) = 3.5, y(0) = 2.5.

Now we choose the parameters of the system as a = 0.5, b = 0.5, c = 0.8,

r = 0.03, s = 0.65, k = 0.5, m = 0.3. Then condition of Theorem 3.4 is satisfied, and

as such E∗(6.4790, 1.8263) is locally asymptotically stable. The corresponding phase

portrait with different initial choices is shown in Figure 2. The behaviour of x and y

with time is shown in Figure 3 when x(0) = 1 and y(0) = 1.

1 2 3 4 5 6 7
1.5

2

2.5

3

3.5

4

x(t)

y(
t)

Figure 2. Phase portrait of the system (2.1) for different values of x(0) and y(0)

when a = 0.5, b = 0.5, c = 0.8, r = 0.03, s = 0.65, k = 0.5, m = 0.3.
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Figure 3. Behaviour of x and y with t for the system (2.1) when the parameter

values are same as in Figure 2 and x(0) = 1, y(0) = 1.

For the above choices of parameters as in Figure 2, using Theorem 4.1, we see that

τ ∗ = 5.12. Therefore, by Theorem 4.1, E∗(6.4790, 1.8263) is locally asymptotically

stable for 0 ≤ τ < τ ∗, and Hopf bifurcation occurs at τ = τ ∗. We verify that, for

τ = 5.1 < τ ∗, E∗ is locally asymptotically stable. The corresponding phase portrait

for different initial choices is shown in Figure 4. The stable behaviour of x and y with

time is presented in Figure 5, when x(0) = 0.2, y(0) = 0.3.

0 5 10 15
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2

2.1

2.2

x(t)

y(
t)

Figure 4. Phase portrait of the system (4.1) for different values of x(0) and y(0)

when a = 0.5, b = 0.5, c = 0.8, r = 0.03, s = 0.65, k = 0.5, m = 0.3 and τ = 5.1.
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Figure 5. Stable behaviour of x and y with t for the system (4.1) when the parameter

values are same as in Figure 4 and x(0) = 0.2, y(0) = 0.3.

On the other hand, if we take τ = 5.3 > τ ∗ keeping other parameters fixed, then

E∗ becomes unstable. The corresponding phase portrait for different initial choices is

shown in Figure 6, which shows that there is a limit cycle that grows out of E∗. The

oscillations of x and y with time is presented in Figure 7, when x(0) = 0.2, y(0) = 0.3.
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y(
t)

Figure 6. Phase portrait of the system (4.1) for different values of x(0) and y(0)

when the parameter values are same as in Figure 4 except τ = 5.3 > τ ∗.
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Figure 7. Oscillations of x and y with t for the system (4.1) when the parameter

values are same as in Figure 6 and x(0) = 0.2, y(0) = 0.3.

6. Concluding remarks

Many populations in nature live in herd for numerous reasons. When two species

live in close physical association, they might have a symbiotic relationship (usually

for the advantage of both). Although symbiosis is usually thought of as a mutually

beneficial relationship, but there is difference of opinion. It is not our intention to

enter into that debate, rather we take it in usual sense. Now, a population might be

susceptible to Allee effect due to many reasons. There should be no denying that,

studies of interplay between these phenomena would be very exciting and challenging.

In this paper, we have constructed a two-species symbiotic model (2.1), where one

species shows a herd behaviour and the other is subject to strong Allee effect.

It is observed (in Theorem 3.1) that the solutions of the system (2.1) remains

non-negative forever. Analysis of stability of the equilibrium points is presented. The

effect of discrete time-delay in the growth term of the first species is studied. It is

shown that the delay of certain dimension might keep the system in a stable state,

whereas the delay has the capability to induce instability into the system through

Hopf bifurcation. In other words, delay has a regulatory impact on the underlying

system. Our results are illustrated through computer simulation using MATLAB.

Nowadays, preservation of ecological balance in nature is an issue which the entire

globe is concerned with. Stability analysis of the interior equilibrium might provide

the conditions for ecological balance in nature. From our analysis, it is evident that

if condition of Theorem 3.4 is satisfied, and τ lies below τ ∗, then ecological balance

can be preserved.



162 P. SEN, A. MAITI, AND G. P. SAMANTA

REFERENCES
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