
Neural, Parallel, and Scientific Computations 25 (2017) 165-180

PARALLEL TWO-DIMENSIONAL PATTERN MATCHING

ALGORITHMS BASED ON GPU

CHARALAMPOS S. KOUZINOPOULOS, PANAGIOTIS D. MICHAILIDIS,

AND KONSTANTINOS G. MARGARITIS

CERN, Switzerland

Department of Balkan, Slavic and Oriental Studies, University of Macedonia,

156 Egnatia Str., 54636 Thessaloniki, Greece

Department of Applied Informatics, University of Macedonia,

156 Egnatia Str., 54636 Thessaloniki, Greece

ABSTRACT. The two-dimensional pattern matching problem is used to locate all the positions

inside a two-dimensional text where a two-dimensional pattern of a smaller or equal size occurs.

In this paper, we present a basic parallel implementation and different optimization techniques of

two important two-dimensional pattern matching algorithms, Baker and Bird and Baeza-Yates and

Regnier, on a Graphics Processing Unit (GPU) platform. The performance of the proposed parallel

implementations is evaluated for the GPU architecture and for different problem parameters. Exper-

imental results demonstrate that there is performance gain of the optimized GPU implementations

over the unoptimized implementation. Additionally, it is shown that the parallel implementation of

Baeza-Yates and Regnier has a significantly higher performance gain comparing to that of the Baker

and Bird algorithm.

Key Words. Two-dimensional pattern matching, Parallel computing, GPU, CUDA.

1. Introduction

String matching is an important problem in text processing and is commonly

used to locate one dimensional patterns (strings) on texts. Although strings are

usually stored in linear files, their interpretation can be very heterogeneous. In many

situations arising in digital data processing we encounter strings of symbols organized

into multidimensional structures, such as two-dimensional. These structures are in

fact very common, almost every computer user has encountered examples of such

structures: images. The usage of multidimensional structures is widespread, with a

very wide spectrum of applications ranging from computer vision to computational

biology [12, 9, 2, 27, 21]. The two-dimensional pattern matching problem consists of

taking two rectangular arrays, an m1 × m2 pattern array and an n1 × n2 text array

and finding all occurrences of the pattern embedded as subarray in the text.

Received September 27, 2016 1061-5369 $15.00 c©Dynamic Publishers, Inc.

166 C. S. KOUZINOPOULOS, P. D. MICHAILIDIS, AND K. G. MARGARITIS

Several well-known algorithms have been presented by researchers for the exact

two dimensional pattern matching problem such as the Naive, Karp and Rabin [13],

Zhu and Takaoka [29], Baker and Bird [7, 8] and the Baeza-Yates and Regnier [6] algo-

rithms. Furthermore, survey and experiments on these algorithms have been already

reported [19]. Similar pattern matching algorithms that allow for approximation [5],

rotation [3, 10] or scaling [4] have been considered.

Two-dimensional pattern matching algorithms are frequently used to process huge

image databases. As the size of image databases rapidly increases over the years,

it is expected that the algorithms should benefit when implemented in parallel on a

graphic processing unit (GPU). In the research literature, parallel implementations on

GPUs have been presented for exact pattern matching and multiple pattern match-

ing algorithms [18, 20, 24, 28, 11, 25, 23]. Similar research efforts in parallelizing

two-dimensional pattern matching algorithms have focussed on OpenMP and MPI

programming paradigms [17]. This present work focuses on the parallelization of the

Baker and Bird and the Baeza-Yates and Regnier two-dimensional pattern match-

ing algorithms through their implementation on a GPU using the Compute Unified

Device Architecture (CUDA) programming model. The performance of the parallel

implementations is evaluated after applying different optimization techniques under

various parameters such as the pattern and text size as well as the size of the alphabet.

To the best of our knowledge, this is the first time that the proposed two-dimensional

pattern matching algorithms are implemented in parallel on a GPU using different

optimization techniques.

The rest of the paper is organized as follows: in Section 2, we provide a short

description of the Baker and Bird and Baeza-Yates and Regnier two-dimensional

pattern matching algorithms. In Section 3, we discuss the parallel implementations of

two-dimensional pattern matching algorithms on the GPU architecture. In Section 4

we present the experimental results of the proposed implementations. Finally, in

Section 5, we draw conclusions.

2. Background

In this section we provide a short description of the Baker and Bird and Baeza-

Yates and Rengier algorithms, tested for parallelization on GPUs. These two-dimen-

sional pattern matching algorithms were chosen specifically because they are practical

and efficient in terms of searching time and are frequently encountered in other re-

search studies. The Baker-Brid and Baeza-Yates and Regnier algorithms both convert

the two-dimensional pattern matching problem into a one-dimensional pattern match-

ing problem. More specifically, they consider the two-dimensional pattern array as a

finite set of different patterns. They also use multiple pattern matching algorithms

to locate all the occurrences of the pattern in the text.

PARALLEL TWO-DIMENSIONAL PATTERN MATCHING ALGORITHMS 167

2.1. Baker and Bird algorithm. The Baker and Bird algorithm like other pattern

matching algorithms consists of two phases: the preprocessing phase and the searching

phase. During the preprocessing phase of the algorithm, an Aho-Corasick automaton

[1] is built for each row of the two-dimensional pattern array and an array is then

preprocessed using the Knuth-Morris-Pratt algorithm [14]. During the preprocessing

phase of the algorithm, an Aho-Corasick automaton [1] is built for each row of the

two-dimensional pattern array and an array is then preprocessed using the Knuth-

Morris-Pratt algorithm [14]. During the preprocessing phase of the algorithm, an

Aho-Corasick automaton [1] is built for each row of the two-dimensional pattern array

and an array is then preprocessed using the Knuth-Morris-Pratt algorithm [14]. The

searching phase of the algorithm uses two steps: row-matching and column-matching.

During the row-matching step, each row of the text is scanned using Aho-Corasick

automaton. For every occurrence position obtained in the row-matching step, it must

be checked if all rows of the pattern appear vertically. This is done in the column-

matching step using the Knuth-Morris-Pratt algorithm. Detailed information on the

preprocessing and the searching phase of the Baker and Bird algorithm can be found

in [19].

2.2. Baeza-Yates and Regnier algorithm. The Baeza-Yates and Regnier algo-

rithm is similar to the Baker and Bird algorithm. It uses the Aho-Corasick [1] algo-

rithm to create an automaton for each row of the two-dimensional pattern array. Each

row of the two-dimensional text is then scanned for the occurrences of the pattern. A

significant difference though is that during the search phase only ⌊ n

m
⌋ primary rows of

the text are scanned, since they cover all possible positions where a pattern row may

occur. If a match is found on a primary row, then m characters on each of the m− 1

secondary rows are also scanned for the pattern using the Aho-Corasick algorithm, to

determine if a complete match occurs. For further details and pseudocode about the

preprocessing and searching phase of the above sequential algorithm can be found in

[19].

3. GPU implementations using CUDA

This section presents data-parallel implementations of the Baker and Bird and the

Baeza-Yates and Regnier two-dimensional pattern matching algorithms and different

optimization techniques.

3.1. Parallel Implementation. To parallelize the Baker and Bird and Baeza-Yates

and Regnier algorithms, different implementation approaches were considered as each

yielded the best performance results.

The execution of Baker and Bird in parallel in an efficient manner is not triv-

ial, due to the data dependencies introduced during the column-matching step of the

168 C. S. KOUZINOPOULOS, P. D. MICHAILIDIS, AND K. G. MARGARITIS

algorithm. In practice, these dependencies inhibit the parallelism level of the imple-

mentation. As discussed in section 2.1, the Knuth-Morris-Pratt algorithm is used to

determine all the positions of the text where a complete match of the pattern occurs.

This is achieved by maintaining a table a with a size of n. Then, for each position

j, k of the text, the value of a[k] depends on the previous value of a[k], as calculated

in position j − 1, k and affects the value of a[k], as determined in position j + 1, k.

For this reason, the rows of the text should be partitioned in such a way that all

characters of a single column are processed by the same thread.

To implement the Baker and Bird algorithm in parallel using the CUDA API,

the following parallelization approach was used. Each thread received a single text

character, starting from the first row of the text and moving to each subsequent

row when all threads had completed their execution paths. Since each active thread

was responsible for a different column of the text, table a can be substituted with

a variable a. Consider the following example; assume that character σ, located at

position j, k of the text, is assigned to a thread i of the device. If there is a transition

between the initial state of the trie and a state q labeled by σ, the thread reads the

character at position j, k + 1 next and so on, until a mismatch or a terminal state of

the Aho-Corasick algorithm. When a terminal state is encountered or in the case of a

mismatch, the value of variable a is updated according to the methodology described

in section 2.1. As no movement of the trie takes place, the supply function of the

Aho-Corasick algorithm is no longer required and can be removed, similar to the

PFAC variant of Aho-Corasick as presented in [20]. Note that the supply function is

used to visit a previous state of the automaton when there is no transition from the

current state to a child state.

Since there are no dependencies between characters of the text for the Baeza-Yates

and Regnier algorithm, different rows of the text can be simultaneously processed by

the threads of the GPU. Thus, it is expected that a greater speedup can be achieved,

comparing to Baker and Bird. To implement Baeza-Yates and Regnier in parallel,

the following parallelization approach was used. The first numBlocks primary rows

of the text were assigned to thread blocks 0, . . . , numBlocks−1. The n characters of

each primary row were further divided into chunks, with each chunk having a size of

Schunk = m characters and were subsequently assigned to threads 0, . . . , threadId−1

of each block. To ensure the correctness of the results, additional m − 1 characters

were used per chunk, for a total of approximately n redundant characters per primary

row of the text. If m × (blockDim − 1) < n, then the next blockDim chunks were

assigned to the threads and so on, until the end of the row was reached. Likewise, if

m − 1 + (numBlocks − 1) × m < n, then the next numBlocks primary rows of the

text were assigned to the thread blocks, until the end of the text was reached. When

a potential match was found on a primary row, the m − 1 secondary rows were also

PARALLEL TWO-DIMENSIONAL PATTERN MATCHING ALGORITHMS 169

scanned by the corresponding thread to determine if a complete match of the pattern

occurs. The improvement for the secondary rows of the text when duplicate pattern

rows exist as described in section 2.2 was omitted, as it is inefficient to allocate a copy

of table b for each of the numBlocks × blockDim threads of the device. Therefore,

in the worst case where p0 = · · · = pm−1, 2m − 2 secondary rows will be scanned.

The preprocessing phase of the Baker and Bird and the Baeza-Yates and Regnier

algorithms was performed sequentially by the host CPU. The text and all following

preprocessing tables were copied to the global memory and therefore were accessible

by all threads of the device. State transition is a two-dimensional array where each

row corresponds to one of the m×m+1 states of the Aho-Corasick trie, each column

to a different character of the alphabet Σ while the cells of the array represent the next

state. To ensure that alignment requirements are met on each row, state transition

was allocated as pitched linear device memory using the cudaMallocPitch() function.

State final is a one-dimensional array, where each column corresponds to a different

state of the trie while the cells indicate whether that state is final or not. Finally, an

array out with a size of ⌈ n

m
⌉ integers was used to determine the number of matches per

thread. Baker and Bird also utilized the next one-dimensional array of the Knuth-

Morris-Pratt algorithm that consists of m + 1 integers. Baeza-Yates and Regnier

used the state supply array for the supply function of the Aho-Corasick algorithm.

The Id() function of the algorithm that is used to access the indices assigned to the

terminal states of the trie was represented by an id array of size m.

3.2. Optimization Techniques. Although the presented parallel implementations

can be over an order of magnitude faster than the corresponding sequential, this

section discusses a number of limitations.

The parallel implementation of the Baker and Bird algorithm has a reduced

efficiency due to its data dependencies. Note that the GTX 970 GPU that is used for

the experiments of this paper has 13 SMs and each SM supports up to 2048 resident

threads for a maximum hardware support of 26624 resident threads. Based on the

way the parallelism of the Baker and Bird is exposed though, only a maximum of

n − m + 1 threads can be active at any time. This results to the underutilization

of the hardware resources and a reduced occupancy of the SMs, even when a text

with a size of n = 10, 000 was used. It is worth noting though that as discussed in

[26], maximizing occupancy does not always result in a better performance. For the

chosen implementation approach of the Baeza-Yates and Regnier algorithm on the

other hand, a total of ⌊ n

m
⌋ threads can be simultaneously active at each of the ⌊ n

m
⌋

primary rows of the text.

3.2.1. Coalescing Memory Accesses. The performance of the algorithm implementa-

tions depends largely on the access pattern of the threads to the global memory of the

170 C. S. KOUZINOPOULOS, P. D. MICHAILIDIS, AND K. G. MARGARITIS

device. For the implementation of the Baker and Bird algorithm, the threads access

consecutive characters of the text. To expand from the example of section 3.1, assume

that thread i is the first thread of a warp1 and that the warp scheduler assigns to it

the character σ at position j, k of the text. Accesses to global memory for compute

capability 5.2 GPUs by all threads of a warp are coalesced into a single memory trans-

action when the requested words are within the same memory segment. The segment

size is 32 bytes when 1-byte words are accessed, 64 bytes for 2-byte words and 128

bytes for words of 4, 8 and 16 bytes. If the text resides in a correctly aligned area of

the global memory, then threads i, . . . , i+31 will access text characters j, k . . . , k+31

inside the same memory segment. Then, all 32 accesses will be coalesced into a single

memory access. Since the maximum memory throughput of the global memory is 128

bytes per transaction, the access pattern of the threads results in the utilization of

the 1

4
of the available bandwidth.

For the implementation of the Baeza-Yates and Regnier algorithm, the memory

accesses of the threads to the global memory for characters of a primary row of the

text are strided with a stride of size m. Since 1-byte words are accessed, the memory

segment size is 32 bytes. Then, when patterns with a size m = 4 are used, accesses

to global memory are coalesced into groups of 4, for patterns with a size m = 8

the accesses are coalesced into groups of 2 while for patterns with a size m ≥ 16,

accesses to global memory are serialized. To work around the coalescing requirements

of the global memory and increase the utilization of the memory bandwidth, it is

important to change the memory access pattern by reading words from the same

memory segment and subsequently store them in the shared memory of the device.

This involves the partition of the primary rows of the text into n

Smemsize

chunks and the

collective read of Smemsize characters from the global into the shared memory by all

blockDim threads of a thread block. Then, for each 16 successive characters from the

same segment, only a single memory transaction will be used. This technique results

in the improvement of the global memory bandwidth utilization by a factor of 16.

The threads can subsequently access the characters stored in shared memory in any

order with a very low latency. Using the shared memory to increase the utilization

of the memory bandwidth has two disadvantages. First, a total of n

Smemsize

× (m− 1)

redundant characters are used per primary row that introduce significantly more work

overhead when compared to the basic data-parallel implementation strategy. Second,

using the shared memory effectively reduces the occupancy of the SMs.

3.2.2. Texture Binding. The preprocessing arrays of the algorithms are relatively

small in size while at the same time they are frequently accessed by the threads.

1Since threads are grouped in a deterministic way, and a warp of a compute capability 5.2 GPU

consists of 32 threads, it holds that i mod 32 = 0

PARALLEL TWO-DIMENSIONAL PATTERN MATCHING ALGORITHMS 171

The performance of their parallel implementation should then benefit when the rel-

evant arrays are bound to the texture memory of the device. The texture reference

was bound to the device memory using cudaBindTexture() for one-dimensional arrays

and cudaBindTexture2D() for two-dimensional arrays allocated as pitched linear de-

vice memory. The textures were then accessed in-kernel using the tex1Dfetch() and

tex2D() functions. Arrays accessed via textures not only take advantage of the texture

caches to minimize the memory latency when cache hits occur but also bypass the

coalescing requirements of the global memory. In the case of the Baker and Bird al-

gorithm implementation, the pattern is accessed directly during the column-matching

step to perform character-by-character verification against the text. To improve the

performance of the implementation, the pattern array can be either bound to the

texture memory or it can be copied during the start of the search phase directly to

the shared memory of the device by all threads of each thread block. As binding

would increase the pressure on the texture caches, the pattern array was copied to

the shared memory for the optimized implementation of Baker and Bird. Recall also

that the first dimension of the state transition array corresponds to the m × m + 1

states of the Aho-Corasick trie and that the maximum size for two-dimensional tex-

ture references is 65, 536× 32, 768 texels. Then, for pattern sizes of m = 256 or more,

m×m + 1 > 65, 536 and therefore the state transition array cannot be bound to the

texture memory of the device.

Table 1 lists the register usage per thread for the basic and optimized versions of

the algorithm implementations as reported by the NVCC compiler using the –ptxas-

options=-v flag.

Table 1. Register usage per thread

Algorithm Basic implementation Optimized implementation

Baker and Bird 25 22

Baeza-Yates and Regnier 30 31

4. Experimental results

The performance of the proposed parallel implementations of the algorithms was

evaluated by comparing the running time of the GPU implementations. The exper-

iments were executed on an Intel Xeon CPU with a 2.40GHz clock speed and 2GB

of memory which was used as a host and a GTX 970 GPU which was used as the

device with compute capability 5.2. This device has 4GB of GDDR5 global memory,

1253MHz Graphics clock rate and 3.5GHz memory clock rate and consists of 13

SMs. Each SM has 128 SPs for a total of 1664 SPs, 96KB of on-chip shared memory

(with a maximum shared memory size per thread block of 48KB), and a 64KB 32-bit

172 C. S. KOUZINOPOULOS, P. D. MICHAILIDIS, AND K. G. MARGARITIS

register file. Each thread block can have a maximum of 1024 threads while each SM

supports up to 2048 active threads. “-funroll-loops” optimization flags. The parallel

GPU implementations of the algorithms were compiled using the NVCC 5.0 compiler

of the CUDA API with the “-O2” optimization flag.

For the Baker and Bird algorithm implementation, 13 thread blocks with 128

threads per block where used for n = 1000 and 13 thread blocks with 768 threads

per block where used for n = 10000. For the Baeza-Yates and Regnier algorithm

implementation, 60 thread blocks with 512 threads per block where used.

The parameters that affect the performance of two-dimensional pattern matching

algorithms are the size n2 of the text, the size m2 of the pattern and the size |Σ| of

the alphabet used. The experiments were repeated 100 times.

The data set used for the experiments was a superset of the sets used in [6, 22, 29].

It consisted of a randomly generated text with a size of n = 1, 000 and n = 10, 000

with three alphabets of size 2, 256 and 1024 to simulate bitmaps with different color

depths. The pattern had a size of m = 4, 8, 16, 32, 64, 128 and 256 characters.

The performance of the parallel implementations is evaluated and obtained time

results are compared to that yielded by sequential implementations. Each imple-

mentation stage also incorporates the optimizations of the previous stages. The first

stage of the implementation was unoptimized. In this first stage, the input data and

the preprocessing arrays of the algorithms were stored in the global memory of the

device. The second stage of the implementation involved the binding of the prepro-

cessing arrays to the texture memory of the device. The third stage, the pattern

array was collectively copied by all the threads of a thread block to the shared mem-

ory of the device. This stage only applied to the implementation of the Baker and

Bird algorithm. Finally, the fourth stage of the implementation involved coalescing

read accesses to the global memory and storing the retrieved data to shared mem-

ory of the device. As already discussed, this optimization was only required for the

implementation of the Baeza-Yates and Regnier algorithm.

Figures 1-2 and Figures 3-4 depict the running times of the presented imple-

mentations of the Baker and Bird and the Baeza-Yates and Regnier algorithms for

different types of data on a GTX970 GPU. Recall from the previous section that the

optimizations were valid only for patterns with a size m ≤ 128, since the maximum

size for two-dimensional texture references is 65, 536×32, 768 texels. As can generally

be seen, the running time of the implementations descreased with each optimization

made to the code, although the algorithms were affected in different ways.

As discussed in section 3, the occupancy of each SM of the GPU for the parallel

implementation of the Baker and Bird algorithm depends on n−m+1. When a text of

a size n = 1000 and n = 1, 000 were used, the performance of the unoptimized parallel

PARALLEL TWO-DIMENSIONAL PATTERN MATCHING ALGORITHMS 173

 0

 0.005

 0.01

 0.015

 0.02

4 8 16 32

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

Pattern size (Alphabet = 2, n = 1000)
Unoptimized

Texture cache
Pattern to shared memory

 0

 0.05

 0.1

 0.15

 0.2

64 128 256

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

Pattern size (Alphabet = 2, n = 1000)
Unoptimized

Texture cache
Pattern to shared memory

 0

 0.005

 0.01

 0.015

 0.02

4 8 16 32

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

Pattern size (Alphabet = 256, n = 1000)
Unoptimized

Texture cache
Pattern to shared memory

 0

 0.05

 0.1

 0.15

 0.2

64 128 256

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

Pattern size (Alphabet = 256, n = 1000)
Unoptimized

Texture cache
Pattern to shared memory

 0

 0.005

 0.01

 0.015

 0.02

4 8 16 32

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

Pattern size (Alphabet = 1024, n = 1000)
Unoptimized

Texture cache
Pattern to shared memory

 0

 0.05

 0.1

 0.15

 0.2

64 128 256

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

Pattern size (Alphabet = 1024, n = 1000)
Unoptimized

Texture cache
Pattern to shared memory

Figure 1. Running times of different optimization techniques for the

parallel implementation of the Baker and Bird algorithm for n = 1000

implementation of the Baker-Bird algorithm decreased in the size of the pattern

due to the decreased occupancy of the device. The performance of the algorithm

implementation increased when the preprocessing arrays were bound to the texture

memory of the device. The performance gain due to that specific optimization stage

was more evident when data with a large alphabet size were used. The increased

efficiency was caused mainly due to the frequent uncoalesced accesses of the threads

to the global memory for the data stored in the preprocessing arrays.

174 C. S. KOUZINOPOULOS, P. D. MICHAILIDIS, AND K. G. MARGARITIS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

4 8 16 32

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

Pattern size (Alphabet = 2, n = 10000)
Unoptimized

Texture cache
Pattern to shared memory

 0

 0.5

 1

 1.5

 2

64 128 256

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

Pattern size (Alphabet = 2, n = 10000)
Unoptimized

Texture cache
Pattern to shared memory

 0

 0.05

 0.1

 0.15

 0.2

 0.25

4 8 16 32

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

Pattern size (Alphabet = 256, n = 10000)
Unoptimized

Texture cache
Pattern to shared memory

 0

 0.5

 1

 1.5

 2

64 128 256

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

Pattern size (Alphabet = 256, n = 10000)
Unoptimized

Texture cache
Pattern to shared memory

 0

 0.05

 0.1

 0.15

 0.2

 0.25

4 8 16 32

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

Pattern size (Alphabet = 1024, n = 10000)
Unoptimized

Texture cache
Pattern to shared memory

 0

 0.5

 1

 1.5

 2

64 128 256

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

Pattern size (Alphabet = 1024, n = 10000)
Unoptimized

Texture cache
Pattern to shared memory

Figure 2. Running times of different optimization techniques for the

parallel implementation of the Baker and Bird algorithm for n = 10000

When the pattern was collectively copied to the shared memory of the GPU by

all threads of a thread block, the performance gain increased slightly comparing to

the second optimization stage, especially when larger pattern sizes were used. In

practice, the initial cost to copy the pattern array from the global to the shared

memory of the device was substantial while the thread accesses to the pattern during

the column-matching step of the Baker and Bird algorithm were not frequent enough

to justify it. The performance gain of the final, optimized kernel ranged between 1

PARALLEL TWO-DIMENSIONAL PATTERN MATCHING ALGORITHMS 175

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

4 8 16 32

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

Pattern size (Alphabet = 2, n = 1000)
Unoptimized

Texture cache
Pattern to shared memory

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

64 128 256

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

Pattern size (Alphabet = 2, n = 1000)
Unoptimized

Texture cache
Pattern to shared memory

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

4 8 16 32

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

Pattern size (Alphabet = 256, n = 1000)
Unoptimized

Texture cache
Pattern to shared memory

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

64 128 256

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

Pattern size (Alphabet = 256, n = 1000)
Unoptimized

Texture cache
Pattern to shared memory

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

4 8 16 32

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

Pattern size (Alphabet = 1024, n = 1000)
Unoptimized

Texture cache
Pattern to shared memory

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

64 128 256

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

Pattern size (Alphabet = 1024, n = 1000)
Unoptimized

Texture cache
Pattern to shared memory

Figure 3. Running times of different optimization techniques for the

parallel implementation of the Baeza-Yates and Regnier algorithm for

n = 1000

and 1.20 times faster than the unoptimized kernel for n = 1, 000 and between 0.96

and 1.50 for n = 10, 000.

The parallel implementation of Baeza-Yates and Regnier had a significantly

higher performance gain comparing to Baker and Bird. This can be attributed to

the fact that the level of the algorithm’s parallelism was improved due to the absence

of data dependencies. Similar to the implementation of the Baker and Bird algorithm,

the running time of Baeza-Yates and Regnier was mainly affected by the size n of

176 C. S. KOUZINOPOULOS, P. D. MICHAILIDIS, AND K. G. MARGARITIS

 0

 0.02

 0.04

 0.06

 0.08

 0.1

4 8 16 32

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

Pattern size (Alphabet = 2, n = 10000)
Unoptimized

Texture cache
Pattern to shared memory

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

64 128 256

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

Pattern size (Alphabet = 2, n = 10000)
Unoptimized

Texture cache
Pattern to shared memory

 0

 0.02

 0.04

 0.06

 0.08

 0.1

4 8 16 32

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

Pattern size (Alphabet = 256, n = 10000)
Unoptimized

Texture cache
Pattern to shared memory

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

64 128 256

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

Pattern size (Alphabet = 256, n = 10000)
Unoptimized

Texture cache
Pattern to shared memory

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

4 8 16 32

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

Pattern size (Alphabet = 1024, n = 10000)
Unoptimized

Texture cache
Pattern to shared memory

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

64 128 256

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

Pattern size (Alphabet = 1024, n = 10000)
Unoptimized

Texture cache
Pattern to shared memory

Figure 4. Running times of different optimization techniques for the

parallel implementation of the Baeza-Yates and Regnier algorithm for

n = 10000

the text and the size m of the pattern and to a lesser degree by the size |Σ| of the

alphabet.

For most types of data, the performance of the parallel implementation of the

Baeza-Yates and Regnier algorithm decreased in the size of the pattern. When the

second implementation stage was used, the performance gain of the parallel implemen-

tations improved especially when a text with a size of n = 10, 000 was used. Finally,

when the shared memory was used to work around the coalescing requirements of the

PARALLEL TWO-DIMENSIONAL PATTERN MATCHING ALGORITHMS 177

device, the performance gain of the parallel implementation of the Baeza-Yates and

Regnier algorithm increased over the second implementation stage. The performance

of the final, optimized kernel ranged between 1 and 2 times faster than the unopti-

mized implementation for n = 1, 000 and between 2 and 15 times when a text with a

size n = 10, 000 was used.

5. Conclusions

In this paper, we presented details on the design and the implementation of

the Baker and Bird and Baeza-Yates and Regnier algorithms on a GPU architecture

using the CUDA API and evaluated their performance after applying different op-

timization techniques. The performance evaluation was based on different problem

parameters. The optimization techniques used to further increase the performance

of the implementations included the following; binding frequently used arrays to the

texture memory of the device; copying the pattern to the shared memory of the de-

vice; coalescing read accesses to the global memory and storing the retrieved data to

shared memory. It was concluded that the performance gain of the final optimized

implemementation of the Baker and Bird algorithm was up to 1.5 times faster than

the unoptimized implementation. It was also discussed that the final and optimized

implementation of the Baeza-Yates and Regnier algorithm was up to 15 times faster

than the unoptimized implementation.

Based upon the fact that in [6] it was suggested that the use of a multiple pattern

matching algorithm based on Boyer-Moore instead of Aho-Corasick should result in

the improvement of the searching phase of the Baeza-Yates and Regnier algorithm,

efficient variants of the Baker and Bird and the Baeza-Yates and Regnier were intro-

duced in [16, 15]. These variants have nearly all the characteristics that make them

suitable for parallel execution on GPUs and their performance was further improved

with their implementation on Graphics Processing Units. Finally, it would be inter-

esting to examine the performance of the parallel implementations presented in this

paper, especially for data sets with larger text and pattern sizes and for additional

types of data, including photo archives and satellite imagery.

REFERENCES

[1] A. Aho and M. Corasick. Efficient String Matching: An Aid to Bibliographic Search. Commu-

nications of the ACM, 18(6):333–340, 1975.

[2] J. Alwidian, H. Abu-Mansour, and M. Ali. Efficient algorithm for two dimensional pattern

matching problem (non-square pattern). 2012.

[3] A. Amir, O. Kapah, and D. Tsur. Faster Two-dimensional Pattern Matching with Rotations.

Theoretical Computer Science, 368(3):196–204, 2006. Combinatorial Pattern Matching.

[4] A. Amir, G. Landau, and U. Vishkin. Efficient Pattern Matching with Scaling. Journal of

Algorithms, 13(1):2–32, 1992.

178 C. S. KOUZINOPOULOS, P. D. MICHAILIDIS, AND K. G. MARGARITIS

[5] R. Baeza-Yates and C. Perleberg. Fast and Practical Approximate String Matching. In Combi-

natorial Pattern Matching, pages 185–192. Springer, 1992.

[6] R. Baeza-Yates and M. Regnier. Fast Two Dimensional Pattern Matching. Information Pro-

cessing Letters, 45(1):51–57, 1993.

[7] T. Baker. A Technique for Extending Rapid Exact-Match String Matching to Arrays of More

than One Dimension. SIAM Journal on Computing, 7(4):533–541, 1978.

[8] R. Bird. Two Dimensional Pattern Matching. Information Processing Letters, 6(5):168–170,

1977.

[9] R. Cole, C. Hazay, M. Lewenstein, and D. Tsur. Two-dimensional parameterized matching.

ACM Transactions on Algorithms, 11(2), 2014.

[10] K. Fredriksson, G. Navarro, and E. Ukkonen. Optimal Exact and Fast Approximate Two Dimen-

sional Pattern Matching Allowing Rotations. Combinatorial Pattern Matching, 2373:235–248,

2002.

[11] L. Hu, Z. Wei, F. Wang, X. Zhang, and K. Zhao. An Efficient AC Algorithm with GPU. Procedia

Engineering, 29:4249–4253, 2012.

[12] C. Hundt and F. Wendland. Efficient two-dimensional pattern matching with scaling and ro-

tation and higher-order interpolation. Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7354 LNCS:124–

137, 2012.

[13] R. Karp and M. Rabin. Efficient Randomized Pattern-matching Algorithms. IBM Journal of

Research and Development, 31(2):249–260, 1987.

[14] D. Knuth, J. Morris, and V. Pratt. Fast Pattern Matching in Strings. SIAM Journal on Com-

puting, 6(2):323–350, 1977.

[15] C. Kouzinopoulos. Parallel and Distributed Implementations of Two-Dimensional and Multiple

Pattern Matching Algorithms. PhD thesis, Department of Applied Informatics, University of

Macedonia, 2013.

[16] C. Kouzinopoulos and K. Margaritis. Improving the Efficiency of Exact Two Dimensional On-

Line Pattern Matching Algorithms. In Proceedings of the 12th Panhellenic Conference on In-

formatics, pages 232–236, 2008.

[17] C. Kouzinopoulos and K. Margaritis. Parallel Implementation of Exact Two Dimensional Pat-

tern Matching Algorithms using MPI and OpenMP. In Proceedings of the 9th Hellenic European

Research on Computer Mathematics and its Applications Conference, 2009.

[18] C. Kouzinopoulos and K. Margaritis. String Matching on a Multicore GPU using CUDA. In

Proceedings of the 13th Panhellenic Conference on Informatics, pages 14–18, 2009.

[19] C. Kouzinopoulos and K. Margaritis. Exact OnLine Two-Dimensional Pattern Matching Using

Multiple Pattern Matching Algorithms. Journal of Experimental Algorithmics, 18, 2013.

[20] C. Lin, S. Tsai, C. Liu, S. Chang, and J. Shyu. Accelerating String Matching using Multi-

Threaded Algorithm on GPU. In Global Telecommunications Conference (GLOBECOM 2010),

2010 IEEE, pages 1–5, 2010.

[21] T. Polcar and B. Melichar. A Two-dimensional Online Tessellation Automata Approach to Two-

dimensional Pattern Matching. In Proceedings of the Eindhoven FASTAR Days, 2004. invited

talk.

[22] J. Tarhio. A sublinear algorithm for two-dimensional string matching. Pattern Recognition Let-

ters, 17(8):833 – 838, 1996.

PARALLEL TWO-DIMENSIONAL PATTERN MATCHING ALGORITHMS 179

[23] T. Tran, M. Giraud, and J.-S. Varr. Bit-parallel multiple pattern matching. In R. Wyrzykowski,

J. Dongarra, K. Karczewski, and J. Waniewski, editors, Parallel Processing and Applied Math-

ematics, volume 7204 of Lecture Notes in Computer Science, pages 292–301. Springer Berlin

Heidelberg, 2012.

[24] A. Tumeo, S. Secchi, and O. Villa. Experiences with String Matching on the Fermi Architecture.

Architecture of Computing Systems-ARCS 2011, pages 26–37, 2011.

[25] L. Vespa and N. Weng. SWM: Simplified Wu-Manber for GPU-based Deep Packet Inspection.

In Proceedings of the 2012 International Conference on Security and Management, 2012.

[26] V. Volkov. Better Performance at Lower Occupancy. In Proceedings of the GPU Technology

Conference, GTC, volume 10, 2010.

[27] J. Zdarek. Two-dimensional Pattern Matching using Automata Approach. PhD thesis, Czech

Technical University, 2010.

[28] X. Zha and S. Sahni. Multipattern String Matching on a GPU. In Computers and Communi-

cations (ISCC), 2011 IEEE Symposium on, pages 277–282. IEEE, 2011.

[29] R. Zhu and T. Takaoka. A Technique for Two-dimensional Pattern Matching. Communications

of the ACM, 32(9):1110–1120, September 1989.

