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ABSTRACT. This article studies a multi-dimensional parabolic problem with a concentrated

nonlinear source having local and nonlocal features. It is shown that if its solution exists, then it

blows up everywhere on the boundary of a ball where the concentrated source is situated. A criterion

for the solution to blow up in a finite time is also given.
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1. INTRODUCTION

Let ς = (ς1, ς2, ς3, . . . , ςn) be a point in the n-dimensional Euclidean space in R
n,

T̂ (> 0) and m(> 1/2) be real numbers, D̂ be a bounded domain in R
n, ∂D̂ be the

boundary of D̂, B̂ be an n-dimensional ball, {ς ∈ R
n : |ς − b̂| < R̂}, centered at a

given point b̂ with radius R̂,
¯̂
B ⊂ D̂, ∂B̂ be the boundary of B̂, v(ς) denote the unit

inward normal vector at ς ∈ ∂B̂, χB̂(ς) = 1 if ς ∈ B̂ and χB̂(ς) = 0 if ς ∈ D̂\B̂ be

the characteristic function. Without loss of generality, let b̂ be the origin. We would

like to study the following multi-dimensional nonlinear parabolic problem:

(1.1)







uγ − ∆ςu =
∂χB̂(ς)

∂v
F (u(ς, γ))Zm(γ) in D̂ × (0, T̂ ],

u(ς, 0) = ψ(ς) on
¯̂
D and u(ς, γ) = 0 for ς ∈ ∂D̂, 0 < γ ≤ T̂ .

We note that F and S are given functions, ∆ς =
∑n

i=1 ∂
2/∂ς2i , and Z(γ) =

∫

D̂
S(u(ς, γ))dς.

The nonlinear source in the problem (1.1) is the product of a local contribution

(∂χB(ς)/∂v)F (u(ς, γ)) and a global contribution Zm(γ). In order to study the be-

havior of the solution over a unit domain, we consider a domain having the same

shape as D̂ [1]. If the shape of the domain is given, then the domain can be uniquely

determined by its size. Let D be a bounded n-dimensional domain having the same
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shape as D̂. Then, there is x0 ∈ D̂ ∩D and a positive constant A such that

D̂ = {ς : ς = x0 + A(x− x0) for x ∈ D}.

Let the size of D be one, that is |D| =
∫

D
dx = 1. Without lost of generality, we can

let x0 be the origin. We note that

A =

(

size of D̂

size of D

)
1

n

=

(

∫

D̂
dς

∫

D
dx

)

1

n

=

(

|D̂|

|D|

)
1

n

= |D̂|
1

n .

Consider the change of variables γ = A2t and ς = Ax. Let B = {x ∈ R
n : |x| < R},

where ∂B is its boundary and R = R̂/A, ν denote the inward normal at x ∈ ∂B,

ϕ(x) be an infinitely differentiable function with compact support, and δ(x) denote

the usual Dirac delta function. By using the spherical coordinates [7], ∂χB̂(ς)/∂v can

be rewritten as following:

∫

Rn

∂χB̂(Ax)

∂v
ϕ(x)dx

=

∫

∞

0

∫ π

−π

∫ π

0

· · ·

∫ π

0

δ(Ar − R̂)ϕ(r, ω1, . . . , ωn−1)r
n−1

×

n−2
∏

i=1

sinn−1−i ωidω1 · · · dωn−1dr

=

∫

∞

0

∫ π

−π

∫ π

0

· · ·

∫ π

0

δ(σ − R̂)ϕ
(σ

A
, ω1, . . . , ωn−1

)( σ

A

)n−1

×
n−2
∏

i=1

sinn−1−i ωidω1 · · · dωn−1
1

A
dσ

=
1

A

∫ π

−π

∫ π

0

· · ·

∫ π

0

ϕ

(

R̂

A
, ω1, . . . , ωn−1

)(

R̂

A

)n−1

×

n−2
∏

i=1

sinn−1−i ωidω1 · · · dωn−1

=
1

A

∫

∞

0

∫ π

−π

∫ π

0

· · ·

∫ π

0

δ

(

r −
R̂

A

)

ϕ

(

R̂

A
, ω1, . . . , ωn−1

)(

R̂

A

)n−1

×

n−2
∏

i=1

sinn−1−i ωidω1 · · · dωn−1dr

=
1

A

∫

Rn

∂χB(x)

∂ν
ϕ(x)dx.

Hence,

∂χB(Ax)

∂v
=

1

A

∂χB(x)

∂ν
,
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and

Z(γ) =

∫

D̂

S(u(ς, γ))dς = An

∫

D̂

s(u(x, t))dx,

where S(u(ς, γ)) = s(u(x, t)). Let ∆ =
∑n

i=1 ∂
2/∂x2

i , H = ∂/∂t − ∆, F (u(ς, γ)) =

f(u(x, t)), U(t) =
∫

D
s(u(x, t))dx, T = T̂ /A2, ∂D be the boundary of D, D̄ be the

closure of D, and Ω = D × (0, T ]. Then, the problem (1.1) becomes

(1.2)







Hu =
∣

∣

∣
D̂
∣

∣

∣

m+ 1

n ∂χB(ς)

∂v
f(u(x, t))Um(t) in Ω,

u(x, 0) = ψ(x) on D̄ and u(x, t) = 0 for x ∈ ∂D, 0 < t ≤ T.

We assume that f(u), s(u), f ′(u) and f ′′(u) are positive, s′(u) and s′′(u) are non-

negative, and ψ(x) is nontrivial on ∂B, nonnegative and continuous function such

that

(1.3) ∆ψ(x) + |D̂|m+ 1

n

∂χB(x)

∂ν
f(ψ(x))

(
∫

D

s(ψ(x))dx

)m

≥ 0.

This intuitively means that at the beginning, the temperature will rise up.

The problem (1.2) describes a temperature u due to a nonlinear source having

local and nonlocal features subject to the initial condition ψ(x) and zero temperature

on the lateral boundary.

A solution of (1.2) is a continuous function on Ω̄ satisfying (1.2). A solution u

of the problem (1.2) is said to be blow up at a point (x, tb) if there exists a sequence

{u(xn, tn)} → ∞ as (xn, tn) → (x, tb).

Instead of studying u(b, t) for any point b ∈ B, we would like to investigate a

solution u(x, t) of (1.2).

We also assume Ω has the property that for any point P ∈ ∂D × (0, T ], there

exists an (n + 1)− dimensional neighborhood Σ such that Σ ∩ ∂D × (0, T ] can be

represented, for some i ∈ {1, 2, . . . , n} in the form

xi = β(x1, x2, . . . , xi−1, xi+1, . . . , xn, t),

where β,Dxβ,D
2
1β are Hölder continuous of exponent α ∈ (0, 1) while DxDtβ and

D2
tβ are continuous.

LetG(x, t; ξ, τ) denote Green’s function corresponding to the problem (1.2). With

the above assumptions on Ω, G(x, t; ξ, τ) has the following properties [6]:

(a) There exists a unique G(x, t; ξ, τ) that is continuous in Ω̄×(D× [0, T )), t > τ .

Furthermore, ∂G/∂x, ∂2G/∂x2 and ∂G/∂t are continuous functions of (x, t; ξ, τ) in

Ω × (D × [0, T )), t > τ.

(b) For each (ξ, τ) ∈ D × [0, T ) on ∂D × (τ, T ], G(x, t; ξ, τ) > 0 in D × (τ, T ].

(c) For any fixed (ξ, τ) ∈ D× [0, T ) and any ǫ > 0, ∂G/∂x, ∂2G/∂x2 and ∂G/∂t

are uniformly continuous functions of (x, t) ∈ Ω with t− τ > ǫ.
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The problem with the case n = 1 was studied by Chan and Tian [4]. They

proved that there was a unique continuous solution before the blow-up has occurred

and they also gave a blow-up criterion. For an n-dimensional problem, Chan and

Tian [5] studied a blow-up with nonlinear source of the form

∂χB(x)

∂ν
f(u(x, t)).

They showed that the nonlinear source represented a correct formulation of a con-

centrated source in multidimensional problems. They also showed that the problem

had a unique solution before the blow-up occurred on the boundary of a ball.

We extend the problem of Chan and Tian [4] into a multidimensional version

base on the formulation of Chan and Tian [5]. In section 2, we quote Boonklurb and

Siriroop’s results [1] that the integral equation corresponding to (1.2) has a unique

continuous solution u, which is nondecreasing function of t. Then, it leads to the

conclusion that u is a unique solution of problem (1.2). Finally, we give sufficient

conditions for a finite time blow-up. The blow-up set of the problem (1.2) is also

given.

2. BLOW-UP SET AND SUFFICIENT CONDITIONS FOR BLOW-UP

IN A FINITE TIME

Boonklurb and Siriroop [1] transformed the problem (1.2) into an integral rep-

resentation. To construct the representation, they used the adjoint operator of the

heat operator, H∗ = −∂/∂t − ∆, and the Green’s second identity to obtain

u(x, t) =

∫

D

G(x, t; ξ, 0)ψ(ξ)dξ(2.1)

+ |D̂|m+ 1

n

∫ t

0

∫

D

G(x, t; ξ, τ)
∂χB(ξ)

∂ν
f(u(ξ, τ))Um(τ)dξdτ.

Using the divergent theorem and integration by parts, (2.1) becomes

(2.2) u(x, t) =

∫

D

G(x, t; ξ, 0)ψ(ξ)dξ +

∫ t

0

∫

∂B

G(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ.

For ease of reference, we will quote theorems 2.3 and 3.1 of Boonklurb and Siriroop

[1] as theorems 2.1 and 2.2, respectively.

Theorem 2.1. There exists tb such that for all 0 ≤ t < tb, the integral equation (2.2)

has a unique continuous solution u ≥ ψ(x), and u is nondecreasing function of t. If

tb is finite, then u is unbounded in [0, tb).

Theorem 2.2. The problem (1.2) has a unique continuous solution u for 0 ≤ t < tb.

By modifying the technique of Chan [2], we can show that if the solution u of the

problem (1.2) blows up, then it blows up everywhere on the boundary of the ball B.
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Theorem 2.3. If tb is finite and ψ attains its maximum on ∂B, then u blows every-

where on ∂B.

Proof. By Theorems 2.1 and 2.2, the problem (1.2) has a unique continuous solution

u for 0 ≤ t < tb. We will first show that, for any t > 0, the solution u of the problem

(1.2) satisfies

u (x, t) > u (y, t) for all x ∈ ∂B and y /∈ ∂B.

Since u (x, t) is known on ∂B × (0, tb), let it be denoted by g (x, t), and rewrite the

problem (1.2) as the following two initial-boundary value problems:

(2.3)

{

Hu = 0 in B × (0, tb) ,

u(x, 0) = ψ(x) on B̄ and u(x, t) = g (x, t) on ∂B × (0, tb) ,

(2.4)

{

Hu = 0 in D\B̄ × (0, tb) ,

u(x, 0) = ψ(x) on D\B̄ and u(x, t) = g (x, t) on ∂B × (0, tb) 0.

Consider the problem (2.3). It follows from the strong maximum principle that (cf.

Friedman [6]) that u attains its maximum on ∂B× (0, tb). Since u is a nondecreasing

function of t, we have, for each given η ∈ (0, tb), u attains its maximum for 0 ≤ t ≤ η

somewhere on ∂B × {η}. Suppose that there exists a smallest positive number, say

t0, and some y0 /∈ ∂B such that u (y0, t0) = minx∈∂B u (x, t0). We claim that for

x ∈ ∂B, u (x, t0) = u (y0, t0). If this is not true, then there exists some x0 ∈ ∂B such

that u (x0, t0) > minx∈∂B u (x, t0). Since u is continuous, there is a point (y′, t0) in

a neighborhood of (x0, t0) such that y′ /∈ ∂B and u (y′, t0) > minx∈∂B u (x, t0). This

contradicts to t0 being the smallest number such that u (y0, t0) = minx∈∂B u (x, t0).

Thus, the claim is proved. We now have that u attains its maximum at (y0, t0) for

0 ≤ t ≤ t0. If y0 ∈ B, then u ≡ u (y0, t0) in B × (0, t0] by the strong maximum

principle. Since u is continuous, we have u ≡ u (y0, t0) in B̄ × [0, t0]. Then, u is

constant in B̄ × [0, t0]. This gives a contradiction since ψ is not constant on B̄. If

y0 ∈
(

D\B̄
)

, then u ≡ u (y0, t0) in
(

D\B̄
)

× (0, t0]. By using the continuity of u, we

have that u ≡ u (y0, t0) in
(

D\B̄
)

× [0, t0]. We again have a contradiction since ψ is

not constant on D\B̄. Therefore, for any t > 0,

(2.5) u (x, t) > u (y, t) for all x ∈ ∂B and y /∈ ∂B.

We claim that for each t > 0, u attains the same value for x ∈ ∂B. Suppose there

is a point x0 ∈ ∂B such that u (x0, t) > minx∈∂B u (x, t) for some t > 0. Since u is

continuous, there exists a point (ỹ, t) in a neighborhood of (x0, t) such that ỹ /∈ ∂B

and u (ỹ, t) > minx∈∂B u (x, t). This contradicts (2.5). Hence, for any t > 0,

(2.6) u (x, t) = max
x∈D̄

u (x, t) for x ∈ ∂B and max
x∈D̄

u (x, t) > u (y, t) for any y /∈ ∂B.

From (2.6), u blows up everywhere on ∂B as t→ tb.
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Let

µ(t) =

∫

D

φ(x)u(x, t)dx,

where φ is the normalized fundamental eigenfunction of the problem,

∆φ+ λφ = 0 in D and φ = 0 on ∂D,

with λ denoting its corresponding eigenvalue.

We will investigate the sufficient conditions for finite time blow-up by developing

the method of Chan and Tian [4].

Theorem 2.4. Let ω be the n-dimensional solid angle, M(t) = supx∈D̄ u(x, t), and

ψ attains its maximum on ∂B. If

µ(0) >

(

λ

|D̂|m+ 1

nRn−1ω

)
1

2m−1

,(2.7)

φ(x)f(u(x, t)) ≥ um(x, t) for all x ∈ ∂B and for all t > 0,(2.8)

s(u(x, t)) ≥ u(x, t) for all x ∈ D and for all t > 0,(2.9)

then the solution u of (1.2) blows up everywhere on ∂B in a finite time.

Proof. Multiplying the normalized eigenfunction φ to (1.2) and integrating over D,

we obtain

µ′ (t) + λµ (t) =

∫

D

φ (x)
∣

∣

∣
D̂
∣

∣

∣

m+ 1

n ∂χB

∂ν
f (u (x, t))Um (t) dx

=

∫

D

∣

∣

∣
D̂
∣

∣

∣

m+ 1

n

φ (x) f (u (x, t))Um (t) (ν (x) · ∇χB (x)) dx

= −

∫

B

n
∑

i=1

∣

∣

∣
D̂
∣

∣

∣

m+ 1

n ∂

∂νi

φ (x) f (u (x, t))Um (t) νidx

=

∫

∂B

∣

∣

∣
D̂
∣

∣

∣

m+ 1

n

φ (x) f (u (x, t))Um (t) dx.

By using (2.9) and the supremum property, we have s (u (x, t)) ≥M (t) for all t > 0,

and
∫

D

s (u (x, t)) dx ≥

∫

D

M (t) dx = M (t) for all t > 0.
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By (2.8) and the above argument, we obtain
∫

∂B

∣

∣

∣
D̂
∣

∣

∣

m+ 1

n

φ (x) f (u (x, t))Um (t) dx ≥

∫

∂B

∣

∣

∣
D̂
∣

∣

∣

m+ 1

n

um (x, t)Um (t) dx

=
∣

∣

∣
D̂
∣

∣

∣

m+ 1

n

Mm (t)Um (t)

∫

∂B

dx

=
∣

∣

∣
D̂
∣

∣

∣

m+ 1

n

Mm (t)Um (t)Rn−1ω

≥
∣

∣

∣
D̂
∣

∣

∣

m+ 1

n

M2m (t)Rn−1ω,

where Rn−1ω is an n-dimensional surface area of a sphere. Thus,

(2.10) µ′(t) + λµ(t) ≥
∣

∣

∣
D̂
∣

∣

∣

m+ 1

n

M2m (t)Rn−1ω for all t > 0.

By the Schwarz’s inequality,

µ(t) =

∫

D

φ (x) u (x, t) dx ≤M (t)

∫

D

φ (x) dx ≤M (t) |D|
1

2

(
∫

D

φ2 (x) dx

) 1

2

.

Since
∫

D
φ2 (x) dx = 1 and |D| = 1, we have

µ(t) ≤M (t) for all t > 0.

Thus, (2.10) becomes

µ′(t) + λµ(t) ≥
∣

∣

∣
D̂
∣

∣

∣

m+ 1

n

Rn−1ωµ2m(t).

Solving this Bernoulli’s inequality, we obtain

µ2m−1(t) ≥
λe(1−2m)t

∣

∣

∣
D̂
∣

∣

∣

m+ 1

n

Rn−1ωe(2m−1)λt +

(

λµ1−2m (0) −
∣

∣

∣
D̂
∣

∣

∣

m+ 1

n

Rn−1ω

) .

Hence, µ2m−1(t) tends to infinity whenever

∣

∣

∣
D̂
∣

∣

∣

m+ 1

n

Rn−1ωe(2m−1)λt +

(

λµ1−2m (0) −
∣

∣

∣
D̂
∣

∣

∣

m+ 1

n

Rn−1ω

)

→ 0.

Thus, we obtain that, if

t→
1

(1 − 2m)λ
ln







−λµ1−2m (0) −
∣

∣

∣
D̂
∣

∣

∣

m+ 1

n

Rn−1ω

∣

∣

∣
D̂
∣

∣

∣

m+ 1

n

Rn−1ω






,

then µ2m−1(t) tends to infinity. From (2.7), we have µ2m−1(0) <
∣

∣

∣
D̂
∣

∣

∣

m+ 1

n

Rn−1ω/λ.

Hence, µ tends to infinity for some finite time t = tb, where

tb ≤
1

(1 − 2m)λ
ln







−λµ1−2m (0) −
∣

∣

∣
D̂
∣

∣

∣

m+ 1

n

Rn−1ω

∣

∣

∣
D̂
∣

∣

∣

m+ 1

n

Rn−1ω






.
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It follows from Theorem 2.3 and the above argument that u blows up for some finite

time tb on the boundary of the concentrated ball B.

From the above theorem, we obtain the upper bound for the blow-up time of our

problem. One can try to use the numerical technique to find the numerical blow-up

time for some specific domains. Especially, one may see the relation between the size

of the domain and the blow-up time. Moreover, one may notice that if the radius of

the concentrated ball is too big, the effect of the boundary condition may prevent the

blow-up to occur. If this is the case, we may extend the idea of Chan and Boonklurb

[3] to find a critical radius of the concentrated ball in order to guarantee the blow-up.

REFERENCES

[1] R. Boonklurb and A. Siriroop, Bow-up set for multi-dimensional blow-up problem due to concen-

trated source having local and nonlocal features, Proc. 30th National Grad. Res. Conf., 31–38,

2003.

[2] C. Y. Chan, Multi-dimensional quenching due to a concentrated nonlinear source, DCDIS Pro-

ceedings, 2:273–278, 2006.

[3] C. Y. Chan and R. Boonklurb, A blow-up criterion for a degenerate parabolic problem due to a

concentrated nonlinear source, Quart. Appl. Math., 65:781–787, 2007.

[4] C. Y. Chan and H. Y. Tain, Single point blow-up for a degenerate parabolic problem with a

nonlinear source of local and nonlocal features, Appl. Math. Comput., 145:371–390, 2003.

[5] C. Y. Chan and H. Y. Tain, A multi-dimensional explosion due to a concentrated nonlinear

source, J. Math. Anal. Appl., 295:174–190, 2004.

[6] A. Friedmann, Partial differential equations of parabolic type, Prentince Hall Inc., Englewood

Cliffs, New Jersey, 1964.

[7] K. R. Stromberg, An Introduction to Classical Real Analysis, Chapman & Hall Wadsworth,

Belmont, 1981.


