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ABSTRACT. Potential flow around two non-overlapping spheres in arbitrary motion through an
unbounded inviscid liquid is considered. Bi-spherical coordinates are introduced to transform the
Laplace equation as well as the boundary conditions to these coordinates. The fact that one of the
coordinate lines is going through the spherical surfaces enables us to seek the solution in Legendre
series with respect to one of the bi-spherical coordinates. The Legendre spectral method is shown
to have an exponential convergence which is confirmed by the computations. The efficiency is so
high that even for the hard cases of two almost touching spheres, an accuracy of 10−10 is achieved
with as few as 20 terms in the expansion. Stream functions instead of velocity potentials are used
for better demonstration of the flow direction of the inviscid liquid, and the contour plots of the
streamlines are presented graphically.
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1. INTRODUCTION

The mechanics of two-sphere interaction (two-sphere problem) in fluid media

have been attracting attention since the early 19th century [1–3]. These interactions

usually occur in the study of suspension, two-phase flow, heat and mass transfer,

and combustion of droplets etc. Among these phenomena, suspension is of particular

interest which is basically the particulate materials in which the second (particulate)

phase comprised by spherical particles (the filler) are randomly dispersed through-

out the continuous phase (the matrix ). Probably the most significant aspect of the

two-sphere problem is to find a general solution of Laplace equation obtained in a

form which is appropriate for cases in which boundary conditions are given over any

two spherical surfaces. Poisson [1] was the first person who successfully solved such

boundary value problem albeit for the case of electrostatic problem.
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It was argued that a successful numerical (e.g., spectral) solution is contingent

on finding the appropriate curvilinear coordinates in which the boundaries of the do-

main of the solution are coordinate lines. It led to a new approach where solutions

were sought in some curvilinear coordinate systems (such as bipolar coordinate) after

transforming the Laplace equation to the curvilinear coordinates. Among others, the

method of bi-spherical coordinates turned out to be a method of great generality. The

fact that the bi-spherical coordinates are the best suited tool for solving a two-sphere

problem was first emphasized by Lord Kelvin. He was apparently the first to intro-

duce the bi-spherical coordinates in 1846 in a letter to Liouville (see [4, §211–212]).

The first detailed application of the bi-spherical coordinates for solving the Laplace

equation was given by G. B. Jeffery [5] for the potential flow around two spheres.

Among different two-sphere problems, the case of temperature field in suspension has

remained a widely popular one as it is somewhat simpler in implementation than

viscosity or elasticity. The application of the bi-spherical coordinates to the heat

conduction problem around two spheres with constant gradient at infinity was first

sketched in [6]. The proposed method was numerically implemented strictly for arbi-

trary separation between the centers of the spheres [7,8], where it was demonstrated

successfully that the solution can be obtained in closed form albeit in infinite series

with respect to Legendre polynomials.

After Jeffery [5], further study of potential flow distribution around two spheres

by employing bi-spherical coordinate method was somewhat neglected until the work

of Weihs and Small [9]. In the meantime, few other methods gained popularity

for solving the problem of potential flow field around two spheres - but none of

them involve the use of bi-spherical coordinates. In one such method proposed by

Mitra [10], two sets of spherical polar coordinates systems were introduced in order

to express the potential field in terms of infinite series whose coefficients satisfy an

infinite set of linear equations. Few years later, Sneddon and Fulton [11] investigated

the problem of determining the potential function for the irrotational flow of an ideal

fluid past two spheres whose centers are fixed in space. They were even able to

develop an expression for the force on one sphere due to the presence of the another

– furthermore they also investigated the effect of the distance between the centers on

this force.

When the method of bi-spherical coordinates was reintroduced in [9], it was for

finding the exact solution for the incompressible potential flow around two adjacent

spheres keeping one of the spheres very close to a wall. Moreover, as demonstrated

in [12], another method based on tangent-sphere coordinate system was preferred over

the method of bi-spherical coordinates in order to obtain the exact solution for the

case when two spheres are actually touching each other. Overall, the true potential of

this method is yet to be realized for the case of potential flow. While considering the
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technical aspects of the numerical scheme based on bi-spherical coordinates among

other curvilinear coordinates, one property stands out is that the boundaries of the

domain of the solution are coordinate lines. This property is of great advantage

especially while considering the arbitrary distance between the two non-overlapping

spheres as demonstrated in [7,8] for the case of temperature distribution around two

spheres. The objective of this paper is to obtain a simple closed expression for the

solution of simplest boundary value problem involving two spheres. The problem

considered is that of determining the potential function for the irrotational flow of an

incompressible, inviscid fluid past two non-overlapping spheres moving arbitrarily by

using the method of bi-spherical coordinates.

2. POSING THE PROBLEM

In fluid dynamics, potential flow refers to the flow outside the boundary layer

that conforms with the laws of flow in electric and magnetic fields. This is known as

the inviscid flow region implying that transverse velocity gradients (i.e., shear) are

minimal and viscous effects are next to none. By contrast, the boundary layer, at

least in laminar flow, is dominated by viscous effects and does not follow the rules

of potential flow. The potential flow of an ideal (inviscid, incompressible) liquid is

governed by the Laplace equations for the velocity potential φ

∆φ = 0,

and the velocity vector is related to the potential as

v = ∇φ.

The boundary conditions for the potential stem from the condition that the liquid

cannot penetrate the surface, hence the normal component of the velocity is zero:

(2.1)
∂φ

∂n
≡ n · ∇φ = v · n = V · n, for x ∈ ∂D,

where ∂D is the boundary of the region D occupied by the body, n is the outside

normal to the surface. Here V is the given velocity of the center of the body (a point

inside the region D). V can be a function of time, but is a constant with respect to

the spatial coordinates x.

3. COORDINATE TRANSFORMATION

For the problem under consideration, the boundary ∂D consists of the two

spheres, i.e., {∂D : x ∈ (|x − za| = a) ∪ (|x − zb| = b}, where za and zb are

the position vectors of the two spheres of radii a and b, respectively. The appropri-

ate coordinate system for which both boundaries |x − za| = a and |x − zb| = b are
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coordinate surfaces is the bi-spherical one. In order to introduce the bi-spherical co-

ordinates, we first change to another set of Cartesian coordinates centered at a point,

P , that lies on the segment connecting the two spheres. In Fig. 1 are plotted the new

coordinate system Py1y2y3 which is obtained from the original system Ox1x2x3 after

rotating about axis Ox1 by an angle (π
2
− ϕ) in negative direction and consequent

rotation about axis Ox2 by an angle (π
2
− θ) in negative direction.
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Figure 1. The geometry of the region.

The most important is the vector z = zb− za which will define the axis Oy3 (see

the figure). Denote z := |z|. Then Oy2 and Oy1 can be seen to be two arbitrary axes

that are perpendicular to the axis Oy3. The center P of the new coordinate system

is chosen in a manner that both spheres are coordinate surfaces of the bi-spherical

coordinate system centered at point P . The connection between the Cartesian coor-

dinates Py1y2y3 and the bi-spherical ones η, ξ, ζ, where −∞ < η < +∞, 0 ≤ ξ < π,

0 ≤ ζ < 2π, may be expressed as follows :

(3.1) y1 = c
sin ξ

cosh η − cos ξ
cos ζ, y2 = c

sin ξ

cosh η − cos ξ
sin ζ, y3 = c

sinh η

cosh η − cos ξ
,

where c is called the focal distance.

The metric coefficients of the bi-spherical coordinate system are given by

(3.2) hξ = hη =
c

cosh η − cos ξ
, hζ =

c sin ξ

cosh η − cos ξ
.

Let us denote by ηa and ηb the coordinate lines which represent the spheres, are

functions of z and sphere radii a and b. Values ηa and ηb are of different signs if

the spheres do not intersect each other and of same sign if one sphere encircles the

other. We consider here the former case and, therefore, we must choose one of these
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numbers negative. Without loosing the generality, we select ηa < 0. Then

(3.3) c =

√
z4 + b4 + a4 − 2z2b2 − 2a2b2 − 2z2a2

2z
=
√
α2z2 − a2,

(3.4) ηa = − ln

∣∣∣∣∣ ca +

√
1 +

c2

a2

∣∣∣∣∣ ≡ − arcsinh
c

a
,

(3.5) ηb = ln

∣∣∣∣∣cb +

√
1 +

c2

b2

∣∣∣∣∣ ≡ arcsinh
c

b
,

where

(3.6) α =
z2 − b2 + a2

2z2
.

The last quantity is positive since z > a+ b, which is due to the fact that spheres do

not intersect each other.

For the relative distances of the sphere’s centers from the point P we get

da =
1

z

√
c2 + a2, db =

1

z

√
c2 + b2, da + db = 1.

Making use of the last formula we are able to complete the connection of systems

Py1y2y3 and Ox1x2x3 by specifying the ‘offset vector’

zp = za + daz = (1− da)za + dazb = dbza + (1− db)zb

where za and zb represent the locations of their respective sphere’s center from the

original system Ox1x2x3. Their magnitudes can be found by computing

(3.7) za = c coth ηa, zb = c coth ηb.

In order to express the result in Cartesian coordinates for possible further manipu-

lation and presentation, we need also the inverse transformation, namely we express

ξ, η and ζ in terms of y1, y2 and y3. In doing so, one has to be very careful with the

regions where the bi-spherical coordinates may be multi-valued. After some algebra,

we obtain

η = arccoth

(
y2

1 + y2
2 + y2

3 + c2

2cy3

)
,

ξ = arcsin

[√
4c2(y2

1 + y2
2)

(y2
1 +y2

2 +(y3+c)2)(y2
1 +y2

2 +(y3−c)2)

]
,

ζ =


arcsin(y2/

√
y2

1 + y2
2), y1 > 0,

π − arcsin(y2/
√
y2

1 + y2
2), y1 < 0,

1
2
π, y1 = 0.
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The new coordinate system Py1y2y3 is obtained by Ox1x2x3 after a translation on

distance OO1 = αz along the positive direction of the axis Ox3. Here z = |z| and

θ, ϕ are its directory angles measured from the original coordinate system, namely

z1 = z cos θ, z2 = z sin θ cosϕ, z3 = z sin θ sinϕ.

Respectively, the relation between the old and new Cartesian systems, whose formal

expression is x = Ay + αz, adopts the form

x1 = y1 sin θ + (y3 + αz) cos θ,

x2 = −y1 cos θ cosϕ+ y2 sinϕ+ (y3 + αz) sin θ cosϕ,

x3 = −y1 cos θ sinϕ− y2 cosϕ+ (y3 + αz) sin θ sinϕ,

(3.9)

where the value of α is specified in (3.6). Introducing the new variables means that

we are considering a new dependent function

(3.10) Φ(ξ, η, ζ; t) := φ[y1(ξ, η, ζ; t), y2(ξ, η, ζ; t), y3(ξ, η, ζ; t); t].

To this end we need to find the time derivative and the gradient of the potential

function φ(x, y, z, t) via the respective derivatives of the function Φ(ξ, η, ζ; t).

First we observe that

∂Φ

∂ξ

∂Φ

∂η

∂Φ

∂ζ


= F



∂φ

∂y1

∂φ

∂y2

∂φ

∂y3


, where F =



∂y1

∂ξ

∂y2

∂ξ

∂y3

∂ξ

∂y1

∂η

∂y2

∂η

∂y3

∂η

∂y1

∂ζ

∂y2

∂ζ

∂y3

∂ζ


is the Jacobian matrix of the coordinate matrix. The entries of the latter are easily

computed from the connection between the two coordinate systems. After the com-

ponents of matrix F are identified, one needs to compute the inverse and we denote

G = F−1. Then we can use the relation

∂φ

∂y1

∂φ

∂y2

∂φ

∂y3


= G



∂Φ

∂ξ

∂Φ

∂η

∂Φ

∂ζ


.

Using Mathematica, we find that:

G =



cos ζ(cos ξ cosh η − 1)

c
−cos ζ sin ξ sinh η

c

(cos ξ − cosh η) sin ζ

c sin ξ

sin ζ(cos ξ cosh η − 1)

c
−sin ζ sin ξ sinh η

c
−cos ζ(cos ξ − cosh η)

c sin ξ

−sin ξ sinh η

c

1− cos ξ cosh η

c
0


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Now, we are ready to find the time derivative as follows:

∂Φ

∂t
=
∂φ

∂t
+ ẋ · ∇φ, ⇒ ∂φ

∂t
=
∂Φ

∂t
− ẋ ·

(
G∇ξΦ

)
,

where ∇φ has been computed in the previous step, and x = xp + y1i + y2j + y3k

is the position vector of the point (y1, y2, y3) and xP is the above defined position

vector of the point P . The latter does not influence the solution in the bi-spherical

coordinates, but does contribute to the velocities of the fluid particles. Respectively

∇ξ is a notation for the gradient in the bi-spherical coordinate system.

4. THE BOUNDARY VALUE PROBLEM FOR THE POTENTIAL IN

TERMS OF BI-SPHERICAL COORDINATES

The Laplace equation has the following form in terms of bi-spherical coordinates

(4.1) ∆Φ ≡ (cosh η−cos ξ)3

c2 sin ξ

[ ∂
∂η

( sin ξ

cosh η−cos ξ

∂Φ

∂η

)
+

∂

∂ξ

( sin ξ

cosh η−cos ξ

∂Φ

∂ξ

)
+

1

sin ξ(cosh η−cos ξ)

∂2Φ

∂ζ2

]
.

Let us define i, j,k to be the unit vectors of the coordinate axes Oy1, Oy2, and Oy3,

respectively. Then for the unit vector along tangential to the coordinate line η one

has

(4.2) eη = −c sin ξ sinh η cos ζ

(cosh η − cos ξ)2
i− c sin ξ sinh η sin ζ

(cosh η − cos ξ)2
j − c cosh η cos ξ − 1

(cosh η − cos ξ)2
k.

Note that the vector eη is not a vector with unit norm. When (if) necessary we will

normalize it and will use so-called “physical components”. The unit vector can be

obtained using the modulus |eη| ≡ hη = c/(cosh η − cos ξ).

To pose the boundary conditions we observe that the outward normal derivative
∂
∂n

is in fact a partial derivative with respect to η at η = ηa and with respect to (−η)

at η = ηb. Respectively, the outward normal vector n is equal to eη or −eη.

The boundary condition at infinity is that the fluid is at rest, hence the potential

must be constant. Since the velocity potential is defined up to a constant, we are free

to select this to be the constant zero. Then

(4.3a) Φ→ 0 as η, ξ → 0.

The boundary conditions at the spheres stem from (2.1) when V a = ża and V b = żb

are the velocity vectors of the centers of the spheres, respectively.

∂Φ

∂η

∣∣
η=ηa

=−csin ξ sinh ηa cos ζ

(cosh ηa−cos ξ)2
V a

1 −c
sin ξ sinh ηa sin ζ

(cosh ηa−cos ξ)2
V a

2 −c
cosh ηa cos ξ−1

(cosh ηa−cos ξ)2
V a

3 .

(4.3b)

∂Φ

∂η

∣∣
η=ηb

=c
sin ξ sinh ηb cos ζ

(cosh ηb−cos ξ)2
V b

1 +c
sin ξ sinh ηb sin ζ

(cosh ηb−cos ξ)2
V b

2 +c
cosh ηb cos ξ − 1

(cosh ηb−cos ξ)2
V b

3 .(4.3c)
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Here the subscripts denote the respective components of the velocity vectors, which

are functions of time only:

(4.4) V a(t) := ża(t), V b(t) := żb(t).

The purpose of this work is to find an analytical solution (albeit in infinite series)

for arbitrary velocities and positions of the centers of the spheres.

5. DUAL FORMULATION USING STREAM FUNCTION

It can be observed that for the spheres moving along the line connecting their

centers of spheres, the potential satisfies

(5.1) ∆φ ≡ (cosh η−cos ξ)3

c2 sin ξ

[ ∂
∂η

( sin ξ

cosh η−cos ξ

∂Φ

∂η

)
+

∂

∂ξ

( sin ξ

cosh η−cos ξ

∂Φ

∂ξ

)]
= 0.

We observe that the Laplace equation (5.1) for the potential is satisfied automat-

ically, if we introduce the following auxiliary function ψ, which is the stream function,

via the relations

(5.2)
∂ψ

∂ξ
:=

sin ξ

cosh η − cos ξ

∂Φ

∂η
,

∂ψ

∂η
:= − sin ξ

cosh η − cos ξ

∂Φ

∂ξ
.

It can be rewritten as follows

(5.3)
cosh η − cos ξ

sin ξ

∂ψ

∂ξ
=:

∂Φ

∂η
,

cosh η − cos ξ

sin ξ

∂ψ

∂η
=: −∂Φ

∂ξ
.

The last form of the relations allows us to derive the equation for ψ, namely

(5.4)
∂

∂η

( sin ξ

cosh η − cos ξ

∂ψ

∂η

)
+

∂

∂ξ

( sin ξ

cosh η − cos ξ

∂ψ

∂ξ

)
= 0,

which has the same form as the Laplace equation for the potential. This means that

we can use the same Legendre series expansion to solve eq. (5.4). The difference is in

the boundary conditions. We will show here that for ψ one obtains a Dirichlet b.v.p.,

which has some decisive advantages. The isolines of stream functions are known as

streamlines. These are lines such that at any given time they are tangent to the

velocity vector. It should be noted that, by definition, the component of the velocity

normal to a streamline is always zero so that there is no mass flux across a streamline.

What it means is that it is possible to represent every solid body/boundary by a

streamline. Another important aspect of introducing the stream function is that it is

relatively easier to demonstrate the fluid flow by using stream function as change in

ψ can be used to determine the flow direction as shown in Fig. 2.

Now, in order to obtain a boundary condition for ∂φ/∂η, we need to take into

account the last terms in each of eqs. (4.3). Though we wish to obtain the potential

flow model for arbitrary velocities and positions of the spheres, for the sake of better

understanding, we need to consider the velocity vector components of the centers of

the spheres which are passing along the line joining the centers of the spheres (albeit
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ψ2 > ψ1

Q
ψ

ψ1

(a) When ψ2 > ψ1, the volume flow

(Q) is positive, since, Q =

∫ ψ2

ψ1

dψ =

ψ2−ψ1. This indicates that flow is to

the right.

ψ2 < ψ1

Q

ψ

ψ1

(b) When ψ2 < ψ1, the volume flow

(Q) is negative, which indicates that

flow is to the left.

Figure 2. Determining the direction of flow from two neighboring streamlines.

to opposite directions) to be nontrivial. In other words, it is assumed the spheres are

moving along the line connecting the centers of the spheres which are approaching

towards each other, which means except V a
3 (and V b

3 ) in eqs. (4.3), other velocity

vector components will be trivial. Thus

∂ψ

∂ξ

∣∣∣
η=ηa

=
sin ξ

cosh η − cos ξ

∂Φ

∂η
=

− sin ξ

cosh η − cos ξ

cosh ηa cos ξ − 1

(cosh ηa − cos ξ)2

= − sin ξ
cosh ηa cos ξ − 1

(cosh ηa − cos ξ)3
,

where the sign of the r.h.s. depends on the sphere under consideration.

Since the stream function is defined up to a constant, we can integrate the last

definitive equality from 0 to ξ. Actually, the stream function is defined up to a
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constant. The rigorous way to do it is to find the first indefinite integral:

ψ(ηa, ξ) = −
∫

sin ξ
cosh ηa cos ξ − 1

(cosh ηa − cos ξ)3
dξ = −1 + cosh2 ηa − 2 cosh ηa cos ξ

2(cosh ηa − cos ξ)2
+ C

= − 1− µ2

2(cosh ηa − cos ξ)2
− 1

2
+ C,

where cos ξ = µ. Then, by choosing C = 1
2
, it can be ensured that ψ(ηa,±π) = 0,

which is the natural symmetry of the problem. Hence

ψ(ηa, ξ) = − 1− µ2

2(cosh ηa − µ)2
.

Using the same substitution ψ =
√

2(cosh η − µ)B(η, µ) we can show that the

solution for B is a Legendre series:

(5.5) B(η, µ) =
∞∑
n=0

[Lne
(n+ 1

2
)η +Mne

−(n+ 1
2
)η]Pn(µ).

The stream function formulation offers a very concise way to solve the boundary

value problem. One has to insert the expression of type eq. (5.5) into the boundary

condition and solve the subsequent algebraic systems.

For further convenience, we will specify two different solutions for B according

to the two sets of boundary conditions:

Ba(ηa, µ) = − 1− µ2

23/2(cosh ηa − µ)5/2
, Ba(ηb, µ) = 0.(5.6a)

Bb(ηa, µ) = 0, Bb(ηb, µ) =
1− µ2

23/2(cosh ηb − µ)5/2
.(5.6b)

To complete the solution we need the above boundary functions expanded into

Legendre series. To this end we use the method of generating function as outlined

in [6, 7]. For the sake of completeness, the derivation is provided below:

The expression on the right-hand side of the last equation can be expanded into

Legendre series, if the generating function of Legendre polynomials (cf. [17,§3.6]) is

used. The latter is defined as follows

(5.7) G(t, µ)
def
= (1− 2tµ+ t2)−1/2 =

∞∑
n=0

tnPn(µ) for t < 1.

For the first and second derivatives of the generating function one gets

(5.8)
∂G(t, µ)

∂t
=

(µ−t)
(1− 2tµ+ t2)3/2

=
∞∑
n=0

ntn−1Pn(µ),

and,

(5.9)
∂2G(t, µ)

∂t2
=

(3µ2 − 4µt+ 2t2 − 1)

(1− 2tµ+ t2)5/2
=
∞∑
n=0

n(n− 1)tn−2Pn(µ),
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respectively. A linear combination of eqs. (5.7), (5.8) and (5.9) gives the Legendre

series of the r.h.s. of eq. (5.5), i.e.,

βG(t, µ) + γGt(t, µ)+δGtt(t, µ) =
−(1− µ2)

23/2(cosh η−µ)5/2
≡ −2(1− µ2)t5/2

(1−2tµ+ t2)5/2
, t

def
= eηa < 1

β

(1− 2tµ+ t2)1/2
+

γ(µ−t)
(1− 2tµ+ t2)3/2

+
δ(3µ2 − 4µt+ 2t2 − 1)

(1− 2tµ+ t2)5/2
= − 2(1− µ2)t5/2

(1− 2tµ+ t2)5/2

(5.10) β(1−2tµ+t2)2+γ(µ−t)(1−2tµ+t2)+δ(3µ2+2t2−4µt−1) = −2(1−µ2)t5/2.

After collecting and comparing the like terms from both sides of eq. (5.10), we

can write the following system of equations for solving the unknowns β, γ, and δ:

(5.11)

1 + 2t2 + t4 −(t+ t3) 2t2 − 1

−4(t+ t3) 3t2 + 1 −4t

4t2 −2t 3


βγ
δ

 =

−2t5/2

0

2t5/2


Solving the system of equations (5.11), we arrive at:

β =
4t5/2

3(−1 + t2)
, γ =

8t7/2

3(−1 + t2)
, and δ =

2t5/2

3
,

which allow us to recast the above boundary conditions as follows:

(5.12a) Ba(ηa, µ) =
∞∑
n=0

2
[
(n+ 1)(n+ 2)e(n+ 5

2
)ηa − n(n− 1)e(n+ 1

2
)ηa

]
3(e2ηa − 1)

Pn(µ),

(5.12b) Ba(ηb, µ) = 0,

(5.13a) Bb(ηa, µ) = 0,

(5.13b) Bb(ηb, µ) =
∞∑
n=0

2
[
(n+ 1)(n+ 2)e−(n+ 5

2
)ηb − n(n− 1)e−(n+ 1

2
)ηb

]
3(−e2ηb + 1)

Pn(µ).

Then eq. (5.12) gives the following system for each n

Lane
(n+ 1

2
)ηa +Ma

ne
−(n+ 1

2
)ηa =

2
[
(n+ 1)(n+ 2)e(n+ 5

2
)ηa − n(n− 1)e(n+ 1

2
)ηa

]
3(e2ηa − 1)

,

Lane
(n+ 1

2
)ηb +Ma

ne
−(n+ 1

2
)ηb = 0.

Respectively, eq. (5.13) gives the following system for each n

Lbne
(n+ 1

2
)ηa +M b

ne
−(n+ 1

2
)ηa = 0,

Lbne
(n+ 1

2
)ηb +M b

ne
−(n+ 1

2
)ηb =

2
[
(n+ 1)(n+ 2)e−(n+ 5

2
)ηb − n(n− 1)e−(n+ 1

2
)ηb

]
3(−e2ηb + 1)

.
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Solving for Lan and Ma
n , we have

Lan =
2e(1+2n)ηa

[
1 + n+ n2 + (1 + 2n) coth ηa

]
3
[
e(1+2n)ηa − e(1+2n)ηb

] ,

Ma
n =

2
[
1 + n+ n2 + (1 + 2n) coth ηa

]
3
[
e−(1+2n)ηa − e−(1+2n)ηb

] ,

and for Lbn and M b
n, we have

Lbn =
2e−2ηb

[
1 + n+ n2 − (1 + 2n) coth ηb

]
3
[
−e(1+2n)ηa + e(1+2n)ηb

] ,

M b
n =

2e(2n+1)ηa−2ηb
[
1 + n+ n2 − (1 + 2n) coth ηb

]
3
[
e(1+2n)ηa − e(1+2n)ηb

] .

5.1. Recovering the potential from Stream Function. After the stream func-

tion is known, one can ideally integrate eq. (5.3)1 to obtain the potential function.

Similarly to ψ, the potential is also defined up to a constant, so one can see φ(0, ξ) = 0.

Before manipulating the said equation we observe that

∂ψ

∂ξ
=
∂ψ

∂µ

∂µ

∂ξ
= sin ξ

∂ψ

∂µ
.

Now, introducing this in eq. (5.3)1 we obtain

(5.14)
∂Φ

∂η
= (cosh η − µ)

∂ψ

∂µ
= −

√
(cosh η − µ)

2

N−1∑
n=0

[Lne
(n+ 1

2
)η +Mne

−(n+ 1
2
)η]Pn(µ)

+
√

2(cosh η − µ)3

N−1∑
n=0

[Lne
(n+ 1

2
)η +Mne

−(n+ 1
2
)η]P ′n(µ).

Recovery of Φ from eq. (5.14) entirely depends of finding suitable close forms for

the products duo – (cosh η − µ)1/2Pn(µ) and (cosh η − µ)3/2P ′n(µ). This problem will

be treated elsewhere.

6. RESULTS AND DISCUSSIONS

Using the Rodrigues formula (see, e.g., [13]), it can be shown that for the stan-

dardized Legendre polynomials (Pn(0) = 1) the following expressions hold forever for

the coefficients of the Legendre series (see, e.g., [14])

f(z) =
∞∑
n=0

an Pn(z), an =
2n+ 1

2n+1n!

∫ 1

−1

f (n)(x) (1−x2)ndx.

The last formula ensures exponential convergence for the series when the sought func-

tion is analytic (all derivative up to infinite order exist). We should stress the point

here that the functions B(η, µ) will remain analytic even if a situation arise where one
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has to deal with an equation with discontinuous coefficients, e.g., for the case of iden-

tifying effective coefficient of heat conductivity [7,15] or electric conductivity. This is

due to the advantage presented by the bi-spherical coordinates, which are structured

in a way that makes the discontinuity to take place only in the first derivatives of

functions that depend on the variable η. The first task to perform here is to verify

the practical convergence of our spectral method.

The exponential convergence ensures that retaining 10-20 terms in the series

should prove to be a sufficient number for quantitatively very good approximation.

For the sake of testing the practical convergence, we focus on the following three main

cases:

1. z = 4, a = 1, b = 2;

2. z = 10, a = 1, b = 2;

3. z = 3.1, a = 1, b = 2.

For the in-depth validation of the method, it is important to have spheres of different

radii. In the left panel of Fig. 3, we present the computed coefficients, Lan,M
a
n , versus

their number(N). Similarly, in the right panel, we present coefficients, Lbn,M
b
n, versus

their number. In both panels of Fig. 3, the distance between the centers of the spheres

is fixed as z = 4, (case 1). Without even comparing them with suitable best-fit curves,

one can recognize the exponential nature of the coefficients. In the similar manner,

Fig. 4 shows the convergence for large distance between the spheres (case 2), while

Fig. 5 shows the result for case 3 when the spheres are almost touching each other.
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(a) For sphere with radius 1 (b) For sphere with radius 2

Figure 3. Exponential decay of the computed coefficients when z = 4.

In case 1, the distance between the closest points of the spheres is one unit which

is twice smaller than the radius of the bigger sphere and is equal to the radius of the

smaller sphere. In terms of the dimensionless distance a/z = 1/4 we see that the small

parameter is not anymore really small. In case 2, the distance between the spheres

is large relative to their radii. The expectation is that such a case will be easier in

some sense and that the solution will resemble closely the mere superposition of the
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Figure 4. Exponential decay of the computed coefficients when z = 10.

solutions originated from the introduction of two spheres individually. In case 3, the

dimensionless distance a/z is equal to 1/3.01, which bigger than the dimensionless

distance from the case 1. This relatively “bigger” parameter makes this case 3 a

probing one, which means, even to achieve reasonably good approximation in the

range of 10−15, we need to retain more than 30 terms. Similarly, for case 2, one can

obtain high order of approximation (in the range of 10−40) by merely retaining 10

terms for the faster converging coefficients – Lan and M b
n in this case.
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Figure 5. Exponential decay of the computed coefficients when z = 3.01.

Next, we present in Fig. 6 and in Fig. 7 the contour plots of stream functions. In

order to verify the method, we consider the case of two spheres moving against each

other along the axis that connects their centers. The left sphere has radius a = 1 and

moves with unit speed to the right (V a = −1). The right sphere is of radius b = 2

which is moving with unit speed to the left (V b = 1). In the left panel of Fig. 6, the

centers of the spheres are kept 4 unit away from each other when spheres are allowed

to move towards each other with equal speed. It can be noticed that the overall

maximum of the modulus of the stream function is of order of 0.15 in Fig. 6(a). This

modulus goes down to the order of 0.03 when the distance between the centers of the
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spheres is set to be 6 units in Fig. 6(b). This is quite reasonable since close interaction

between the spheres will create more disturbance in the streamline profiles.

(a) For z = 4 (b) For z = 6

Figure 6. Contour plots for profiles of Stream functions for various

proximity between the centers of the spheres.

(a) Smaller sphere in the left (b) Smaller sphere in the right

Figure 7. Contour plots for profiles of Stream functions for spheres

almost touching each other.

Now, let’s consider the fluid flow between two neighboring streamlines in order to

understand the profile of the velocity potential of the fluid in somewhat vicarious way.

We know that the change in the value of ψ from one streamline to another is equal to

the net flux of the fluid between them. Also, being reminded the connection between

the two neighboring streamlines and the flow direction between them as shown in

Fig. 2, it can be determined that in the lee side of the bigger spheres in both panels

of Fig. 6, the flow direction is counterclockwise. Moreover, since the value of the

velocity potential (φ) drops along the direction of flow, in this case, the value of φ
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decreases in the counterclockwise direction. As we shift our attention to the sides of

the spheres facing each other, we can observe more interesting case. In the left side

of the bigger sphere, we can notice the flow direction to be counterclockwise. In the

right side of the smaller sphere, there exists a flow direction which is clockwise. When

two opposite streams come in contact to each other, disturbance is created. When

the spheres are away from each other, the magnitude of disturbance is negligible as

can be seen on the right panel of Fig. 6. Note that these are the streamlines and

subsequently, the potentials created due to the presence of the spheres. Furthermore,

it indicates that there are inflow/outflow velocity components at the boundaries of

the spheres. This is explained that motion of the boundary creates these components.

As spheres approach very close to each other, the profile becomes more chaotic

as can be seen on Fig. 7. One noticeable feature in contour plots of Fig. 7 is that

the flows in the lee side of the bigger spheres are clockwise in direction. Also, albeit

unsurprisingly, the order of magnitude of the stream functions increases reasonably.

Moreover, if we allow the bigger sphere to go to the direction opposite to that of the

fluid flow, the order of magnitude becomes even bigger. Since the fluid is incompress-

ible, the rate of flow at any point must be same. This implies that if v is the velocity

and dψ is the distance between the streamlines, then vdψ = constant. Therefore,

the closer the streamlines are, the greater the velocity of the fluid between the two

neighboring streamlines or stream tubes.

7. CONCLUSION

In this paper, we employ a semi-analytical approach to solve the problem of dis-

tribution of velocity potential around two, non-intersecting, unequal spheres moving

arbitrarily in an ideal fluid flowing with constant velocity. The equivalent stream func-

tion formulation is introduced in order to attack the boundary value problem with

more straight-forward approach. We show that the general solution can be expressed

in series in Legendre polynomials. To this end, we use the method of generating func-

tions to expand the boundary conditions into Legendre series and to obtain a closed

algebraic system for the coefficients. Thus a fast spectral method based on expansion

in Legendre series of stream functions is devised, which has exponential convergence.

Our numerical results confirm the exponential convergence, and we are able to obtain

solutions of accuracy of 10−20 with 10-20 terms, which makes the proposed method

very efficient. The solution is thoroughly validated for different distances between

the spheres. Various cases are treated and shown graphically in order to analyze

the distribution of streamlines and subsequently the corresponding velocity potential

profiles for different proximities between the spheres.
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