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ABSTRACT. In this article, we obtain a family of exact solutions for the 3-dimensional non-

isentropic compressible pressureless Euler equations the Euler-Poisson equations with pressure in

both the attractive and repulsive cases. Here, the exact solutions for the pressureless Euler equations

are with arbitrary function parameters.
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1. Introduction and Main Results

In fluid dynamics, the 3-dimensional non-isentropic compressible Euler or Euler-

Poisson equations are expressed as follows:

(1)























ρt + ∇ · (ρu) = 0

ρ[ut + (u · ∇)u] + ∇P = δρ∇Φ

St + u · ∇S = 0

∆Φ = ρ,

where ρ = ρ(t,x) denotes the density of the fluid, u = u(t,x) = (u1, u2, u3) ∈ R3 is

the velocity, x = (x, y, z) ∈ R3. The first equation of (1) is called the mass equation

which is derived from the law of conservation of mass; the second equations are

called the momentum equations which are a consequence of the law of conservation

of momentum of the fluid; the third equation is the entropy equation which is a result

of the law of conservation of energy; the fourth equation is called the Poisson equation

which is related to the balance of forces of the substance involved.

The function P denotes the pressure function, which is given by the γ-law, that

is

(2) P = KeSργ ,
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where K ≥ 0 and γ ≥ 1 are constants related to the state of the gas or fluid involved.

The constant δ can be either −1, 0 or 1.

When δ = −1 or 1, the system (1) is called the non-isentropic compressible

Euler-Poisson equations. More precisely, when δ = −1 the system is attractive and

can be used to model fluids such as gaseous starts. Moreover, the system is a non-

relativistic descriptions of a galaxy in astrophysics. Reader may refer to [2] and [4]

for more details. When δ = 1, the system (1) is repulsive and and can be viewed as

a semiconductor model. See [5] and [10] for more information.

When δ = 0, the system (1)1−3 is called non-isentropic compressible Euler equa-

tions which is a fundamental model in fluid mechanics [10, 6]. The Euler equations are

also the special case of the noted Navier-Stokes equations, whose problem of whether

there is a formation of singularity is still open and long-standing. In addition, if

K = 0, then the pressure vanishes and the system is called pressureless Euler equa-

tions which be regarded as simple models of cosmology [18] or plasma physics [3]. For

more information of studies of the pressureless Euler equations, readers can refer to

[1, 7, 8, 13].

The importance of constructing analytical or exact solutions in mathematical

physics and applied mathematics is that they can be used to classify and understand

the nonlinear phenomena. In this area, Makino first obtained the solutions for the

Euler equations in RN in radial symmetry in 1993 [12]. A number of special solu-

tions for these equations [15, 16] were subsequently obtained. In particular, in 2015,

Yuen obtained a class of rotational solutions for the compressible Euler equations

in [17]. While for the solutions for the Euler-Poisson equations, there exists some

corresponding results [9, 11, 14].

In this article, we present two families of exact solutions for the pressureless Euler

equations and the Euler-Poisson equations with pressure in R3. To be specific, we

have the following two theorems.

Theorem 1. For δ = 0 and K = 0, the 3-dimensional pressureless Euler equations,

(1)1, (1)2 and (1)3, have the following family of exact solutions,

(3)















































ρ =
f(s, z)

am+n

u =

(

ȧ

a
(mx + ny + g(z)),

ȧ

a
(mx + ny + g(z)), 0

)

S = h (s, z)

a =







eα1+α2t, if 2 − m − n = 0

(β1 + β2t)
1

2−m−n , if 2 − m − n 6= 0,

where f , g and h are C1 functions in addition that f ≥ 0 with s := mx+ny+g(z)
am+n ; and

m, n, α1, α2, β1 > 0 and β2 are arbitrary constants. In particular,
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(1) if 2 − m − n 6= 0 and β2 < 0, the solutions (3) blow up on −β1

β2
;

(2) Otherwise, the solutions (3) globally exist.

Theorem 2. For δ 6= 0, the 3-dimensional Euler-Poisson equations with pressure (1)

have the following family of analytical solutions,

(4)























ρ = max(f(η), 0)

u1 = u2 = u3 = g(ξ)

S = ln fα(η)

Φ = K(α+γ)
δ(α+γ−1)

fα+γ−1 (η) ,

where η := b1x + b2y + b3z and ξ := a1x + a2y + a3z with
∑3

k=1 bk =
∑3

k=1 ak = 0,

ak are not all zero, bk are not all zero; α is a constant such that α + γ 6= 1, 0; and

f = f(η) satisfies the following ordinary differential equation

(5)

{

ff ′′ + (α + γ − 2) (f ′)2 = δ
K(α+γ)(b2

1
+b2

2
+b2

3
)

1
fα+γ−4

f(0) > 0, ḟ(0) = f1,

here f1 is an any constant.

The remaining sections are organized as follows. In section 2, we present the

proof of Theorem 1 and the proof of Theorem 2 is given in section 3. Both of the

proofs are explained by plugging the solutions forms directly and checking that the

mass equation (1)1, the momentum equations (1)2, the entropy equation (1)3 and the

Poisson equation (1)4 are satisfied.

2. The Pressureless Euler Equations

In this section, we give the proof of Theorem 1.

Proof of Theorem 1. For the mass equation, namely, the equation (1)1, we have

ρt + ρ∇ · u + u · ∇ρ(6)

=
∂

∂t
ρ +

[

∂

∂x

ȧ

a
(mx + ny + g(z))

]

ρ +

[

∂

∂y

ȧ

a
(mx + ny + g(z))

]

ρ(7)

+

[

∂

∂z
0

]

ρ +
ȧ

a
(mx + ny + g(z))

∂

∂x
ρ +

ȧ

a
(mx + ny + g(z))

∂

∂y
ρ + 0 ·

∂

∂z
ρ(8)

=
∂

∂t
ρ + (m + n)

ȧ

a
ρ +

ȧ

a
(mx + ny + g(z))

(

∂

∂x
ρ +

∂

∂y
ρ

)

(9)

= f(s, z)

(

−(m + n)ȧ

am+n+1

)

+
1

am+n

∂f(s, z)

∂s

∂s

∂t
+ (m + n)

ȧ

a

f(s, z)

am+n
(10)

+
ȧ

a
(mx + ny + g(z))

(

∂f(s,z)
∂s

am+n

∂s

x
+

∂f(s,z)
∂s

am+n

∂s

y

)

(11)
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=
1

am+n

∂f(s, z)

∂s

∂s

∂t
+

ȧ

a
(mx + ny + g(z))

(

∂f(s,z)
∂s

am+n

∂s

∂x
+

∂f(s,z)
∂s

am+n

∂s

∂y

)

(12)

=
∂f(s,z)

∂s

am+n

[

∂s

∂t
+

ȧ

a
(mx + ny + g(z))

(

∂s

∂x
+

∂s

∂y

)]

(13)

=
∂f(s,z)

∂s

am+n

[

− (m + n)ȧ
(mx + ny + g(z))

am+n+1
(14)

+
ȧ

a
(mx + ny + g(z))

( m

am+n
+

n

am+n

)

]

= 0,(15)

where s := mx+ny+g(z)
am+n .

For the first momentum equation, we have

u1t + u1u1x + u2u1y + u3u1z(16)

=

(

ä

a
−

ȧ2

a2

)

(mx + ny + g(z)) +
ȧ

a
(mx + ny + g(z))

(

ȧ

a
m

)

(17)

+
ȧ

a
(mx + ny + g(z))

(

ȧ

a
n

)

= (mx + ny + g(z))

(

ä

a
−

ȧ2

a2
+

ȧ2

a2
m +

ȧ2

a2
n

)

(18)

= (mx + ny + g(z))

[

ä

a
− (m + n − 1)

ȧ2

a2

]

(19)

= (mx + ny + g(z))
1

a2−m−n

[

a1−m−nä + (1 − m − n)a−m−nȧ2
]

(20)

= (mx + ny + g(z))
1

a2−m−n

∂

∂t

[

a1−m−nȧ
]

.(21)

If 2 − m − n = 0, then the equation (21) becomes

(mx + ny + g(z))
1

a0

∂

∂t

(

a−1ȧ
)

(22)

= (mx + ny + g(z))
∂2

∂t2
ln a(23)

= (mx + ny + g(z))
∂2

∂t2
(α1 + α2t)(24)

= 0.(25)

If 2 − m − n 6= 0, then the equation (21) becomes

(mx + ny + g(z))
1

a2−m−n

∂

∂t

(

a1−m−nȧ
)

(26)

= (mx + ny + g(z))
1

a2−m−n

∂2

∂t2

(

1

2 − m − n
a2−m−n

)

(27)
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= (mx + ny + g(z))
1

a2−m−n

∂2

∂t2
(β1 + β2t)(28)

= 0.(29)

For the second momentum equation, we have

u2t + u1u2x + u2u2y + u3u2z(30)

= u1t + u1u1x + u2u1y + u3u1z(31)

= 0.(32)

For the third momentum equation, we have

u3t + u1u3x + u2u3y + u3u3z(33)

= 0 + 0 + 0 + 0(34)

= 0.(35)

For the entropy equation, we have

St + u · ∇S(36)

= St + u1Sx + u2Sy + u3Sz(37)

=
∂S

∂t
+

ȧ

a
(mx + ny + g(z))

(

∂S

∂x
+

∂S

∂y

)

(38)

=
∂h(s, z)

∂s

∂s

∂t
+

ȧ

a
(mx + ny + g(z))

(

∂h(s, z)

∂s

∂s

∂x
+

∂h(s, z)

∂s

∂s

∂y

)

(39)

=
∂h(s, z)

∂s

[

∂s

∂t
+

ȧ

a
(mx + ny + g(z))

(

∂s

∂x
+

∂s

∂y

)]

(40)

=
∂h(s, z)

∂s

[

−(m + n)(mx + ny + g(z))ȧ

am+n+1
(41)

+
ȧ

a
(mx + ny + g(z))

( m

am+n
+

n

am+n

)

]

= 0.(42)

Based on the solution (3)4, it is clear to have the following results. In particular,

(1) if 2 − m − n 6= 0 and β2 < 0, the solutions (3) blow up on −β1

β2
;

(2) Otherwise, the solutions (3) globally exist.

The proof is completed.

3. The Euler-Poisson Equations

In this section, we present the proof of Theorem 2.
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Proof of Theorem 2. For the mass equation (1)1, we have

ρt + ∇ · (ρu)(43)

= 0 + ∇ · (ρu)(44)

= ρ∇ · u + u · ∇ρ(45)

= f(η) [gx(ξ) + gy(ξ) + gz(ξ)] + gfx(η) + gfy(η) + gfz(η)(46)

= (a1 + a2 + a3)fg′ + (b1 + b2 + b3)gf ′(47)

= 0 + 0(48)

= 0,(49)

where η := b1x + b2y + b3z and ξ := a1x + a2y + a3z.

For the entropy equation (1)3, we have

St + u · ∇S(50)

= 0 + u · ∇S(51)

= u1Sx + u2Sy + u3Sz(52)

= g(a1x + a2y + a3z)

(

∂

∂x
α ln f(η) +

∂

∂y
α ln f(η) +

∂

∂z
α ln f(η)

)

(53)

= g(a1x + a2y + a3z)α
1

f(η)
f ′(η)

(

∂η

∂x
+

∂η

∂y
+

∂η

∂z

)

(54)

= g(a1x + a2y + a3z)α
1

f(η)
f ′(η) (b1 + b2 + b3)(55)

= 0.(56)

We can rewrite the momentum equations (1)2 as

(57) [ut + (u · ∇)u] +
1

ρ
∇P = δ∇Φ.

For the first term in the first momentum equation in the equations (57), we have

u1t + u1u1x + u2u1y + u3u1z(58)

= 0 + u1(u1x + u1y + u1z)(59)

= g(ξ)[gx(ξ) + gy(ξ) + gz(ξ)](60)

= (a1 + a2 + a3)gg′(61)

= 0.(62)

Similarly, the first terms in the second and third momentum equations in the equa-

tions (57) vanish. That is,

(63) ut + (u · ∇)u = 0.
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On the other hand, the second term in the first momentum equation becomes

1

ρ
Px(64)

=
1

f(η)

[

KeSργ
]

x
(65)

=
1

f(η)

[

Kfα+γ(η)
]

x
(66)

=

[

K(α + γ)

α + γ − 1
fα+γ−1

]

x

(67)

= δΦx.(68)

by the equations (4)3−4. Similarly, we have

(69)
1

ρ
Py = δΦy,

and

(70)
1

ρ
Pz = δΦz.

That is,

(71)
1

ρ
∇P = δ∇Φ.

From the equations (63) and the equations (71), we have

(72) ut + (u · ∇)u +
1

ρ
∇P = δ∇Φ.

For the Poisson equation (1)4, we have, by the ordinary differential equation (5),

∆Φ(73)

= Φxx(η) + Φyy(η) + Φzz(η)(74)

= (b2
1 + b2

2 + b2
3)Φ

′′(η)(75)

= (b2
1 + b2

2 + b2
3)

[

Kγ

δ(α + γ − 1)
(α + γ − 1)fα+γ−2f ′

]

′

(76)

=
(b2

1 + b2
2 + b2

3)K(α + γ)

δ

[

fα+γ−2f ′
]

′

(77)

=
(b2

1 + b2
2 + b2

3)K(α + γ)

δ

[

fα+γ−2(f ′′)α+γ−3(f ′)2
]

(78)

=
(b2

1 + b2
2 + b2

3)K(α + γ)

δ
fα+γ−3

[

ff ′′ + (γ − 2)(f ′)2
]

(79)

=
(b2

1 + b2
2 + b2

3)K(α + γ)

δ
fα+γ−3 δ

(b2
1 + b2

2 + b2
3)K(α + γ)

1

fα+γ−4
(80)

= f(81)

= ρ.(82)
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Thus, the Poisson equation (1)4 is satisfied.

The proof is completed.
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