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ABSTRACT. In this paper, we propose a new approach for solving fourth-order partial differential

equations (PDEs) which uses an intermediate step so that fourth order PDEs can be reduced to

second order PDEs. This method is simple and easy to implement. We compare the numerical result

of this method to the Kansa method and the method of approximate particular solutions (MAPS).

We also observe the numerical accuracy of the proposed method on the local Kansa method (LKM)

and localized method of approximate particular solutions (LMAPS). Numerical results show that

this method outperforms the MAPS and Kansa method in both global and local cases.

AMS (MOS) Subject Classification. 65N35.

1. INTRODUCTION

During the past quarter century, radial basis functions (RBFs) have played an

important role in state-of-the-art meshless methods for solving partial differential

equations (PDEs). In general, there are three main considerations for solving PDEs

- accuracy, efficiency and simplicity. To fulfill these criteria, Edward Kansa [7] de-

veloped the radial basis function collocation method (RBFCM) which is known as

the Kansa method. The Kansa method has been successfully applied to solve many

challenging problems in science and engineering. Followed by several developments

of meshless methods Chen et al. [2] proposed a new method called the method of

approximate particular solutions (MAPS) which uses the particular solution of RBFs

to approximate the differential equation. The main disadvantages of the RBF collo-

cation method are related to the formation of full and dense matrices that are very
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sensitive to the choice of the free shape parameter and the difficulty in solving prob-

lems with a large number of unknowns. This is due to the use of the radial basis

function interpolation which increases the condition numbers of the related matrices

as the number of nodes increases. Various kinds of RBF collocation methods have

been developed to overcome the difficulties of full, dense, and ill-conditioned matrices

arising from the early version of the RBF collocation method. To mitigate the com-

putational cost for large-scale problems, Mai-Duy et al. [11] employed the domain

decomposition method. In 2002, Chen et al. [3] proposed a multi-grid approach using

compactly supported RBFs. In recent years, the localized version of RBF collocation

methods such as the local Kansa method (LKM) and the localized method of approx-

imate particular solutions (LMAPS) [15, 18] have been developed and widely used

for solving large-scale problems. The main advantage of the local version of the RBF

collocation methods is the collocation on subdomains which drastically reduces the

collocation matrix size. These new methods have been proven as effective numerical

methods to alleviate the problems of dense and ill-conditioned matrices. The latest

development of RBF collocation methods has grown to compete with the traditional

mesh-based numerical methods, such as finite element and finite difference methods.

We have seen extensive research in industrial applications, science, and engineering

which shows that RBF collocation methods are maturing and becoming accepted as

a method of choice for solving PDEs by researchers and practitioners.

Fourth order partial differential equations (PDEs) have a wide range of applica-

tions in various fields of science and engineering. Some examples of physical flows and

engineering problems modeled by fourth order PDEs are ice formation [13], fluids on

lungs [6], image processing for noise removal [8, 10], etc. Yao et al. [19] compared three

meshless methods- LMAPS, local direct RBF collocation method (LDRBFCM), and

local indirect RBF collocation method (LIRBFCM)- for solving heat diffusion equa-

tions. In [19], authors concluded that LMAPS and LIRBFCM had slightly better

results. In this paper, we focus on RBF collocation methods for solving fourth-

order PDEs in both global and local cases. First, we use the Kansa method and the

method of approximate particular solutions using multiquadric (MQ) and normalized

multiquadric (NMQ) radial basis functions. Here we note that the corresponding dif-

ferentiations and integrations are required to obtain closed form particular solutions

of RBFs. Next, we employ the new approach for solving fourth-order PDEs both

locally and globally. Finally, direct RBFCMs and new RBFCMs are compared for

the approximation of functions.

The organization of this paper is as follows. In section 2, the type of PDEs with

various kinds of boundary conditions is listed. In section 3, we briefly introduce some

RBF collocation methods: Kansa method, method of approximate particular solu-

tions (MAPS) and localized method of approximate particular solutions (LMAPS).
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The formulation of the new approach is briefly explained in section 4. In section 5,

we present the numerical results and we draw conclusions from the comparisons in

section 6.

2. GOVERNING EQUATIONS

Let us limit our discussion to the solution of fourth-order PDEs defined on a fixed

domain Ω with boundary ∂Ω in 2D,

Lu(x, y) = f(x, y), (x, y) ∈ Ω,(2.1)

Dirichlet boundary condition

u(x, y) = g(x, y), (x, y) ∈ ∂Ω,(2.2)

Neumann boundary condition

∂u(x, y)

∂n
= h(x, y), (x, y) ∈ ∂Ω,(2.3)

where

L = ∆2 + α(x, y)
∂

∂x
+ β(x, y)

∂

∂y
+ γ(x, y),

∆2 denotes the biharmonic operator, ∆ denotes the Laplace operator, ∂/∂n is the

normal derivatives on the boundary ∂Ω, and α, β, γ, f , g, h are given functions.

3. RBF COLLOCATION METHODS

3.1. Kansa Method. The Kansa method [7], pioneered by Edward Kansa in 1990,

is considered to be the first RBF collocation method. This method has been suc-

cessfully applied to solve linear and non-linear PDEs. The only geometric property

utilized in this method is the distance between points in the computational domain;

consequently, extending to a higher dimension does not increase the difficulty of the

method. To briefly explain the Kansa method, we consider the following simple

boundary value problem:

Lu(x) = f(x), x ∈ Ω,(3.1)

Bu(x) = g(x), x ∈ ∂Ω,

where L is a differential operator, B is a boundary differential operator, f and g are

known functions, Ω is a domain, and ∂Ω is the boundary of Ω. The important part of

the Kansa method involves approximating the solution u with a linear combination

of RBFs, i.e.,

û(x) =
N

∑

j=1

αjφ(‖x− xj‖),
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where {αj}N
j=1 are undetermined coefficients. Applying the operators and utilizing

the collocation techniques yield

(3.2)
N

∑

j=1

αjLφ(‖xk − xj‖) = f(xk), k = 1, 2, . . . , Ni,

and

(3.3)
N

∑

j=1

αjBφ(‖xk − xj‖) = g(xk), k = Ni + 1, . . . , N,

where Ni denotes the number of interior points and the number of boundary nodes

is denoted by Nb, i.e., N = Ni + Nb. The system (3.2) and (3.3) is a square linear

system for which {αj}N
j=1 can be obtained using any appropriate linear system solver.

3.2. Method of Approximate Particular Solutions. Chen et al. [2] proposed

the method of approximate particular solutions (MAPS) to improve the method of

particular solutions (MPS) by avoiding the calculation of the homogeneous solution.

Using the RBFs, an approximate particular solution to (3.1) is given by

û(x) =
N

∑

i=1

αiΦ(ri).

Here we note that

LΦ(r) = φ(r),

where L is a differential operator and Φ(r) is the particular solution for the corre-

sponding RBF φ(r). It is worth noting that the MAPS representation appears similar

to the Kansa method. The major distinction between MAPS and Kansa method is

that the MAPS derives the corresponding particular solution Φ by a reverse differen-

tiation process. Thus, the MAPS may have a more sound mathematical foundation.

3.3. Localized Method of Approximate Particular Solutions. Different from

the global methodologies and inspired by the idea of CS-RBFs, a number of localized

methods have been proposed to alleviate the ill-conditioning of the resultant matrix,

the costly dense matrix of the RBF interpolation, and the uncertainty of the selection

of the optimal shape parameter. Instead of solving a dense matrix in the global

approach, the local approach results in a sparse matrix that can be solved efficiently

[18].

Let {xi}N
i=1 be a set of collocation points in Ω ∪ ∂Ω. For each xi ∈ Ω we choose

the nearest neighbor points Ωi = {xi
k}n

k=1, where xi
k = xk(i) denotes the local indexing

for each collocation point belonging to Ωi. The construction requires that Ωi∩Ωj 6= φ

for some j 6= i and {xi}N
i=1 = ∪iΩi. Our purpose is to formulate a numerical scheme

to approximate u(x) and its derivatives at all collocation points xi. Since these points
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can be selected arbitrarily in the domain, we can always choose the points where the

approximate solutions are needed as the collocation points.

Consider the collocation method on the local domain Ωi and let xi = xi
k ∈ Ωi for

some k ≤ n. Then u(xi) can be approximated by a localized formulation as follows:

(3.4) û(xi) =
n

∑

k=1

αi
kΦ(‖xi − xi

k‖),

where n is the number of the nearest neighboring points xi
k surrounding collocation

point xi, including the collocation point itself, αi
k are the unknown coefficients to be

determined, and Φ(x) is an RBF. It can be proved that Φ is non-singular such that

the inverse matrix can always be computed provided that all the nodal points inside

Ωi are distinct points. The unknown coefficients can be written as follows:

αi = Φ−1ûi,

where

α = [α1, α2, . . . , αn]T , û = [û(xi
1), . . . , û(x

i
n)]T .

Hence, û(xi) can be expressed in terms of the function values at n nodal points, ûn,

i.e.

û(xi) =
n

∑

k=1

αkΦ(‖xi − xi
k‖) = Φ̂(xi)α = Φ̂(xi)Φ

−1
n ûn,

û(xi) = Ψn(xi)ûn,

where

Φ̂(xi) = [Φ(‖xi − xi
1‖),Φ(‖xi − xi

2‖), . . . ,Φ(‖xi − xi
n‖)],

and

Ψn(xi) = Φ̂(xi)Φ
−1
n = [ψ1, ψ2, . . . , ψn].

Let ûN = [û(x1), . . . , û(xN)]T . We reformulate in terms of global ûN instead of

local ûn by padding the vector Ψn(xi) with zero entries based on the mapping between

ûn and ûN . It follows that

û(xi) = Ψ(xi)û,

where Ψ(xi) is a N ×N sparse matrix only having N × n non zero elements. Substi-

tuting in (3.4) results in a linear sparse system of equations which when solved, we

get an approximate solution û at all of the collocation points.
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4. NEW FORMULATION OF FOURTH-ORDER PDEs

The numerical approximation of higher order PDEs can be more complicated

than lower orders. By reducing the order of the governing equation, we can alleviate

some necessary mathematical computations in the numerical simulation. Hence, in

this approach, we reduce the fourth order PDEs into two second-order PDEs. The

formulation of the problem starts with the representation of ∆u = w, then (2.1)–(2.3)

will be reduced to the following system of equations:

∆w(x, y) + Lu(x, y) = f(x, y), (x, y) ∈ Ω,(4.1)

w − ∆u = 0, (x, y) ∈ Ω,(4.2)

where

L = α(x, y)
∂

∂x
+ β(x, y)

∂

∂y
+ γ(x, y),

Dirichlet boundary condition

u(x, y) = g(x, y), (x, y) ∈ ∂Ω,(4.3)

Neumann boundary condition

∂u(x, y)

∂n
= h(x, y), (x, y) ∈ ∂Ω,(4.4)

where u, g, and h are known.

The important part of this formulation involves the approximation of the solutions

u and w with a linear combination of RBFs as shown below:

û(x) =
N

∑

i=1

aiψ(‖x− xi‖),

ŵ(x) =
N

∑

i=1

biψ(‖x− xi‖),

where {ai}N
i=1 and {bi}N

i=1 are coefficients to be determined, ψ is a radial basis function

and ∆ψ = φ. The above solutions u and w can be written as û = [ψ][a] and ŵ = [ψ][b]

which lead to [a] = [ψ]−1û and [b] = [ψ]−1ŵ. So then, (4.1)-(4.4) reduce respectively

to the following equations:
[

α(x, y)

[

∂ψ

∂x

]

[ψ−1] + β(x, y)

[

∂ψ

∂y

]

[ψ−1] + γ(x, y)

]

û+ [φ][ψ−1]ŵ = f(x, y),

[φ][ψ−1]û− ŵ = 0,

û = g(x, y),
[

∂ψ

∂x

]

[ψ−1]nx +

[

∂ψ

∂y

]

[ψ−1]ny = h(x, y).
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Finally, we solve the above block matrix system to determine the unknown coefficients

{ai} and {bi}. Here we observe that the size of this block matrix will be twice that

of the direct RBF collocation method.

4.1. RBFs and the Particular Solutions. In this paper, the types of radial ba-

sis functions can be chosen as needed, but the corresponding differentiations and

integrations are required for the closed-form particular solutions of RBFs in both

global and local cases of Kansa method and MAPS. During the past two decades,

significant progress has been made in deriving closed-form particular solutions using

various radial basis functions [5, 9, 12, 16]. In this paper, we used multiquadric and

the normalized multiquadric (NMQ) radial basis functions for the numerical experi-

ment. Here we list the closed-form particular solution of the normalized multiquadric

in 2-D:

ψ(r) =
√
ǫ2r2 + 1

For the Kansa method, the derivation of the particular solution for the Laplacian is

given by

∆ψ(r) =
ǫ2(ǫ2r2 + 2)

(ǫ2r2 + 1)
3

2

.

For the direct RBF collocation method, by direct differentiation we have,

∆2ψ(r) =
ǫ4(ǫ4r4 + 8ǫ2r2 − 8)

(ǫ2r2 + 1)
7

2

.

For the Neumann B.C., we have

1

r

∂ψ

∂r
=

ǫ2
√

1 + (ǫr)2
.

For the method of approximate particular solutions (MAPS), the derivation of

particular solutions for the Laplacian by inverse differentiation is given by [12]

φ =
1

9
r2
√

1 + ǫ2r2 +
4

9ǫ2

√
1 + ǫ2r2 − 1

3ǫ2
log(

√
1 + ǫ2r2 + 1).

For the Neumann B.C., we have

1

r

∂φ

∂r
=

2
√

1 + ǫ2r2 + ǫ2r2(
√

1 + ǫ2r2 + 1) + 1

3(ǫ2r2 +
√

1 + ǫ2r2 + 1)
.

For the Biharmonic operator [12],

φ =
4r2

75ǫ2

√
1 + ǫ2r2 +

r2

12ǫ2
− 61

900ǫ4

√
1 + ǫ2r2

− r2

12ǫ2
log(

√
1 + ǫ2r2 + 1) +

r4

225

√
1 + ǫ2r2 +

log(
√

1 + ǫ2r2 + 1)

30ǫ4
.
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For the Neumann B.C., we have

1

r

∂φ

∂r
=

11

90ǫ2

√
1 + ǫ2r2 − 2 log(

√
1 + ǫ2r2 + 1) − 1

12ǫ2

+
17r2

450
√

1 + ǫ2r2
+

10ǫ2r4 + 15
ǫ2(

√

1+ǫ2r2+1)
+ 8r2

450
√

1 + ǫ2r2
.

5. NUMERICAL RESULTS

To verify the effectiveness of the new approach for solving fourth order PDEs,

two numerical examples are presented. We have compared the results in terms of

accuracy implementing the Kansa method directly and with the new formulation

employed in this paper both globally and locally. The multiquadric (MQ) is used as a

basis function. The normalized form of MQ, which is called normalized multiquadric

(NMQ) has also been used as a basis function. We have also compared the errors

of MQ with those of NMQ with the shape parameter ǫ. We use the leave-one-out

cross validation (LOOCV) algorithm [14] to find a suitable shape parameter ǫ for

MQ. Direct KANSA and New KANSA respectively represent the results obtained by

using the Kansa method directly and by the new formulation employed in this paper

in the global case. Direct LKANSA and New LKANSA respectively represent the

corresponding results for the local case. Direct MAPS, New MAPS, Direct LMAPS,

and New LMAPS are defined similarly for the method of approximate particular

solutions both in global and local cases.

To validate the numerical accuracy, we calculate the following root mean square

error (RMSE),

RMSE =

√

√

√

√

1

q

q
∑

j=1

(ûj − uj),

where q is the number of testing nodes chosen randomly in the domain, uj and ûj

denote the exact solution and approximate solution at the jth node, respectively. In

the numerical results, ni and nb respectively represent the number of interior and

boundary points.

Example 5.1. We consider the following partial differential equation with mixed

boundary conditions:

Lu(x, y) = f(x, y), (x, y) ∈ Ω,(5.1)

u(x, y) = sin(πx) cosh(y) − cos(πx) sinh(y), (x, y) ∈ ∂Ω,

∂u(x, y)

∂n
= g(x, y), (x, y) ∈ ∂Ω,

where

L = ∆2 + x2y3 + y cos(y)
∂

∂x
+ sinh(x)

∂

∂y
,
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and n is the unit normal vector. f(x, y) and g(x, y) are generated from the analytical

solution:

u(x, y) = sin(πx) cosh(y) − cos(πx) sinh(y).

The computational domain Ω as shown in Figure 1 is bounded by the curve defined

by the parametric equation:

∂Ω = {(x, y)|x = ρ cos θ, y = ρ sin θ, 0 ≤ θ ≤ 2π},

where

ρ = esin θ sin2(2θ) + ecos θcos2(2θ).

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

y

Computational Domain

Figure 1. Amoeba-shape Domain

Table 1. RMSE for New LMAPS and Direct LMAPS

New LMAPS Direct LMAPS

(ni, nb) RMSE CPU Time ǫ RMSE CPU Time ǫ

(3809,500) 2.330e-03 5.95 1.52 9.030e-03 4.19 1.62

(15254,500) 2.630e-05 25.29 1.87 4.950e-03 15.40 1.65

(23850,500) 9.510e-06 40.13 2.54 2.770e-02 23.82 3.10

We list in Table 1 the numerical results for the LMAPS with Ω being an amoeba-

shape domain. Numerical accuracy between New LMAPS and Direct LMAPS is

almost the same for a small number of interior nodes. However, as the number of

interior nodes increases, the New LMAPS is far more accurate than the direct one.

Due to the large size of the matrix in the new formulation, the computational cost

of the New LMAPS is slightly higher than that of the Direct LMAPS, which seems

reasonable. The number of interior points is taken up to 23, 850 with 500 boundary

points with an accuracy of 9.510 × 10−6 which is promising. We choose 21 nodes in

the local domain. The stability of the normalized MQ as depicted in Figure 2 enables
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us to find the stable solution in the New LMAPS by LOOCV. We observe the same

kind of stability behavior in the Direct LMAPS as shown in Figure 3.

0 2 4 6 8 10
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−5

10
−4
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−3

10
−2

10
−1

10
0

10
1

10
2

10
3

ε 

R
M

S
E

 

 

Normalized MQ
MQ

Figure 2. MQ versus NMQ in New LMAPS

Table 2. RMSE for New LKANSA and Direct LKANSA using NMQ

New LKANSA Direct LKANSA

(ni, nb) RMSE ǫ RMSE ǫ

(3809,500) 3.673e-01 3.72 4.269e-02 2.36

(15254,500) 4.451e-04 4.67 1.227e-02 2.31

(23850,500) 6.311e-04 5.74 3.438e-02 3.11

We compare the numerical accuracy of the new local Kansa method with that

of the direct local Kansa method in Table 2 with the same number of computational

nodes as in Table 1. From the numerical results, we can easily observe that the new

approach performs better than the direct one. Moreover, in this paper we want to

compare the performance of NMQ over MQ. From Figures 2 and 3, we observe that

NMQ has more stable results as compared with the results obtained from MQ.

Table 3. RMSE for New MAPS and Direct MAPS using NMQ

New MAPS Direct MAPS

(ni, nb) ǫ RMSE ǫ RMSE

(60,30) 0.40 4.277e-04 0.35 1.361e-03

(126,60) 0.61 1.089e-04 0.71 5.600e-04

(208,90) 0.91 3.696e-05 1.41 1.665e-04

(507,180) 1.72 4.204e-05 2.47 1.056e-04

Tables 3 and 4 show the numerical results for the global RBF collocation methods

such as Kansa method and MAPS. We compare the numerical accuracy between the
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new formulation and direct ones. We test 60, 126, 208, and 507 different interior points

for the amoeba-shape domain. When we increase the number of computational nodes,

the new formulation performs better than the direct ones in both cases. In this case,

we use 507 interior points, 180 boundary points, and 300 test points. The new MAPS

has accuracy of 4.204 × 10−5 at shape parameter 1.72 and the new Kansa method

has accuracy of 4.050 × 10−5 at shape parameter 1.32 which is at least one order of

accuracy better than the corresponding direct ones for 507 interior nodes and 180

boundary nodes. From this observation, we can easily say that this new approach is

equally suitable for global collocation methods also.
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Figure 3. MQ versus NMQ in Direct LMAPS

Table 4. RMSE for New KANSA and Direct KANSA using NMQ

New KANSA Direct KANSA

(ni, nb) ǫ RMSE ǫ RMSE

(60,30) 0.30 1.666e-04 0.71 2.304e-02

(126,60) 0.56 1.752e-04 0.91 1.583e-03

(208,90) 0.81 9.363e-05 1.01 2.411e-04

(507,180) 1.36 4.050e-05 1.01 1.474e-04

Example 5.2. We consider the following fourth-order partial differential equation:

Lu(x, y) = f(x, y), (x, y) ∈ Ω,(5.2)

u(x, y) = y sin(x) + x cos(y), (x, y) ∈ ∂Ω,

∆u(x, y) = g(x, y), (x, y) ∈ ∂Ω,

where

L = ∆2 + xy + 2y sin(x)
∂

∂x
− y cos(x)

∂

∂y
,
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f(x, y) and g(x, y) are generated from the analytical solution:

u(x, y) = y sin(x) + x cos(y).

The computational domain is bounded by the following peanut-shape parametric

curve as shown in Figure 4 :

∂Ω = {(x, y)|x = ρ cos θ, y = ρ sin θ, 0 ≤ θ ≤ 2π},

where

ρ = cos(2θ) +
√

1.1 − sin2(2θ).

−1 −0.5 0 0.5 1
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−0.2

0
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0.4

0.6
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Computational Domain

Figure 4. Peanut-shape Domain

In Tables 5 and 6, we compare the numerical results of global RBF collocation

methods. In this example, we test fewer computational nodes as compared with the

previous example. For the Kansa method, using only 293 interior points and 120

boundary points, the accuracy for the new Kansa method is 3.059 × 10−7. Similar

accuracy is obtained for the new MAPS with the same number of computational

nodes. Due to the smooth boundary of the peanut-shape domain, the accuracy shows

an improvement compared with the amoeba-shape domain which we can observe from

the numerical results. In this example also, we observe that the new method performs

at least one order of accuracy better than the direct ones. Moreover, from the result,

we see that the accuracy improves quickly as the number of interior and boundary

nodes increases.

The numerical results of the fourth-order convection-diffusion equation for local

Kansa method and local MAPS are listed in Tables 7 and 8, respectively. In this

example we use 15 points in the local subdomain. To solve this Dirichlet problem, we

use different numbers of interior and boundary nodes for the normalized MQ. Here

we observe that for only 1602 interior points and 80 boundary points, the accuracy

for the new local Kansa method and direct local Kansa method are 1.761× 10−6 and

4.584× 10−4, respectively, which are considerably good. As we increase the numbers
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Table 5. RMSE for New KANSA and Direct KANSA using NMQ

New KANSA Direct KANSA

(ni, nb) ǫ RMSE ǫ RMSE

(25,20) 0.20 2.204e-06 0.22 4.656e-04

(145,60) 0.07 2.552e-07 0.36 8.398e-06

(293,120) 0.12 3.059e-07 0.37 8.111e-06

Table 6. RMSE for New MAPS and Direct MAPS using NMQ

New MAPS Direct MAPS

(ni, nb) ǫ RMSE ǫ RMSE

(25,20) 0.25 3.394e-06 0.20 5.315e-05

(145,60) 1.01 2.541e-07 0.43 7.622e-06

(293,120) 1.62 2.047e-07 0.86 6.248e-06

of the interior and boundary nodes the accuracy reaches 2.144 × 10−7 for the new

local Kansa method, which is even better than the new LMAPS. From this numerical

result we assert that the new approach is equally applicable for (5.2).

Table 7. RMSE for New LKANSA and Direct LKANSA using NMQ

New LKANSA Direct LKANSA

(ni, nb) ǫ RMSE ǫ RMSE

(1602,80) 1.11 1.761e-06 0.51 4.584e-04

(2024,120) 0.91 1.010e-06 0.40 1.841e-04

(2508,180) 1.01 2.144e-07 0.35 1.039e-04

Table 8. RMSE for New LMAPS and Direct LMAPS using NMQ

New LMAPS Direct LMAPS

(ni, nb) ǫ RMSE ǫ RMSE

(1602,80) 1.31 1.896e-06 0.66 1.088e-04

(2024,120) 1.62 1.059e-06 0.71 4.083e-05

(2508,180) 1.62 8.752e-07 0.10 5.458e-05

6. CONCLUSION

Solving fourth-order PDEs with high accuracy and efficiency is not an easy task.

By using an intermediate step to reduce fourth-order PDEs to second-order PDEs,
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we successfully implemented the new approach to solve various fourth-order PDEs.

Numerical results show that the new formulation of RBF collocation methods out-

performed the direct RBF collocation methods in both global and local cases. Here,

we would like to emphasize the fact that the matrix size in the new formulation is

twice that of the direct formulation, however, it is still efficient and accurate. From

the numerical results, we observe that the new formulation has at least one order of

accuracy better than the direct ones. Moreover, the use of the normalized MQ seems

to have very stable results compared to the results obtained by MQ. LOOCV is able

to catch the optimal shape parameter due to the stability of the normalized MQ even

in the local case.
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