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ABSTRACT. Wavelet packets have greater decorrelation properties than standard wavelets in

that they induce a finer partitioning of the frequency domain of the process generating the data.

This allows our procedure to be applied to a wide class of processes. The concept of wavelet packets

on local field of positive characteristic was considered by Behera and Jahan by proving a version of

splitting lemma for this setup. In this paper, we investigate the properties of wavelet packets by

means of the Fourier transform using a prime element p of a local field K of prime characteristic.
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1. INTRODUCTION

Multiresolution analysis (MRA) is an important mathematical tool since it pro-

vides a natural framework for understanding and constructing discrete wavelet sys-

tems. A multiresolution analysis is an increasing family of closed subspaces {Vj : j ∈ Z}
of L2(R) such that

⋂
j∈Z Vj = {0} ,

⋃
j∈Z Vj is dense in L2(R) and which satisfies f ∈ Vj

if and only if f(2·) ∈ Vj+1. Furthermore, there exists an element ϕ ∈ V0 such that the

collection of integer translates of function ϕ, {ϕ(· − k) : k ∈ Z} represents a complete

orthonormal system for V0. The function ϕ is called the scaling function or the father

wavelet. The concept of multiresolution analysis has been extended in various ways

in recent years. These concepts are generalized to L2
(
Rd
)
, to lattices different from

Zd, allowing the subspaces of multiresolution analysis to be generated by Riesz basis

instead of orthonormal basis, admitting a finite number of scaling functions, replacing

the dilation factor 2 by an integer M ≥ 2 or by an expansive matrix A ∈ GLd(R)

as long as A ⊂ AZd. For more about wavelets and their applications, we refer the

monograph [7].

In recent years there has been a considerable interest in the problem of con-

structing wavelet bases on various groups, namely, Cantor dyadic groups [12], locally

compact Abelian groups [8], p-adic fields [11] and Vilenkin groups [14]. Wavelets
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have also been redefined based on an algebraic basis and exploitation of the group

symmetries for the two scale equations by A. Ludu and etal[13]. Here the algebraic

properties of Fourier series are obtained and it has been shown that wavelets of cer-

tain types obey exactly the q-deformation of the algebraic structure of the Fourier

series. Recently, R. L. Benedetto and J. J. Benedetto [2] developed a wavelet theory

for local fields and related groups. They did not develop the multiresolution analy-

sis (MRA) approach, their method is based on the theory of wavelet sets and only

allows the construction of wavelet functions whose Fourier transforms are character-

istic functions of some sets. Since local fields are essentially of two types: zero and

prime characteristic (excluding the connected local fields R and C). Examples of local

fields of characteristic zero include the p-adic field Qp where as local fields of prime

characteristic are the Cantor dyadic group and the Vilenkin p-groups. Even though

the structures and metrics of local fields of zero and prime characteristics are similar,

but their wavelet and multiresolution analysis theory are quite different. The concept

of multiresolution analysis on a local field K of prime characteristic was introduced

by Jiang et al.[10]. They pointed out a method for constructing orthogonal wavelets

on local field K with a constant generating sequence. Subsequently, tight wavelet

frames on local fields of prime characteristic were constructed by Shah and Debnath

[23] using extension principles. More results in this direction can also be found in

[16, 17, 18, 19, 20, 21, 22] and the references therein.

It is well known that the classical orthonormal wavelet bases have poor frequency

localization. For example, if the wavelet ψ is band limited, then the measure of the

supp of (ψj,k)
∧ is 2j-times that of supp ψ̂. To overcome this disadvantage, Coifman

et al.[5] introduced the notion of orthogonal univariate wavelet packets. Well known

Daubechies orthogonal wavelets are a special of wavelet packets. Chui and Li [4]

generalized the concept of orthogonal wavelet packets to the case of non-orthogonal

wavelet packets so that they can be employed to the spline wavelets and so on. Shen

[24] generalized the notion of univariate orthogonal wavelet packets to the case of

multivariate wavelet packets. The construction of wavelet packets and wavelet frame

packets on local fields of prime characteristic were recently reported by Behera and

Jahan in [1]. They proved lemma on the so-called splitting trick and several theo-

rems concerning the Fourier transform of the wavelet packets and the construction

of wavelet packets to show that their translates form an orthonormal basis of L2(K).

Other notable generalizations are the vector-valued wavelet packets [22], nonuninform

wavelet packets [20] and Tight framelet packets [18]. Several authors like Daubechies

[6] have studied Fourier transform of Wavelets and scaling functions. Where as Coif-

man et al. [5], Wickerhauser [26] and Hernandez and Weises[9] have obtained several

results on Fourier transform of Wavelet packets.
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Motivated and inspired by the concept of wavelet packets on local fields of prime

characteristic, we investigate their properties by means of Fourier transform. This

paper is organized as follows. In Section 2, we discuss some preliminary facts about

local fields of prime characteristic and also some results and some which are required

in the subsequent sections on local fields of prime characteristic. In Section 3, we

introduce the notion of wavelet packets on local field K and examine their properties

by means of the Fourier transform.

2. PRELIMINARIES ON LOCAL FIELDS

Let K be a field and a topological space. Then K is called a local field if both K+

and K∗ are locally compact Abelian groups, where K+ and K∗ denote the additive

and multiplicative groups of K, respectively. If K is any field and is endowed with the

discrete topology, then K is a local field. Further, if K is connected, then K is either

R or C. If K is not connected, then it is totally disconnected. Hence by a local field,

we mean a field K which is locally compact, non-discrete and totally disconnected.

The p-adic fields are examples of local fields. More details are referred to [15, 25]. In

the rest of this paper, we use the symbols N,N0 and Z to denote the sets of natural,

non-negative integers and integers, respectively.

Let K be a local field. Let dx be the Haar measure on the locally compact

Abelian group K+. If α ∈ K and α 6= 0, then d(αx) is also a Haar measure. Let

d(αx) = |α|dx. We call |α| the absolute value of α. Moreover, the map x → |x| has

the following properties: (a) |x| = 0 if and only if x = 0; (b) |xy| = |x||y| for all

x, y ∈ K; and (c) |x + y| ≤ max {|x|, |y|} for all x, y ∈ K. Property (c) is called the

ultrametric inequality. The set D = {x ∈ K : |x| ≤ 1} is called the ring of integers

in K. Define B = {x ∈ K : |x| < 1}. The set B is called the prime ideal in K. The

prime ideal in K is the unique maximal ideal in D and hence as result B is both

principal and prime. Since the local field K is totally disconnected, so there exist

an element of B of maximal absolute value. Let p be a fixed element of maximum

absolute value in B. Such an element is called a prime element of K. Therefore, for

such an ideal B in D, we have B = 〈p〉 = pD. As it was proved in [25] the set D

is compact and open. Hence, B is compact and open. Therefore, the residue space

D/B is isomorphic to a finite field GF (q), where q = pk for some prime p and k ∈ N.

Let D∗ = D \B = {x ∈ K : |x| = 1}. Then, it can be proved that D∗ is a group

of units in K∗ and if x 6= 0, then we may write x = pkx′, x′ ∈ D∗. For a proof of this

fact we refer to [15]. Moreover, each Bk = pkD =
{
x ∈ K : |x| < q−k

}
is a compact

subgroup of K+ and usually known as the fractional ideals of K+. Let U = {ai}q−1i=0

be any fixed full set of coset representatives of B in D, then every element x ∈ K can

be expressed uniquely as x =
∑∞

`=k c`p
` with c` ∈ U . Let χ be a fixed character on

K+ that is trivial on D but is non-trivial on B−1. Therefore, χ is constant on cosets
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of D so if y ∈ Bk, then χy(x) = χ(yx), x ∈ K. Suppose that χu is any character

on K+, then clearly the restriction χu|D is also a character on D. Therefore, if

{u(n) : n ∈ N0} is a complete list of distinct coset representative of D in K+, then, as

it was proved in [25], the set
{
χu(n) : n ∈ N0

}
of distinct characters on D is a complete

orthonormal system on D.

The Fourier transform f̂ of a function f ∈ L1(K) ∩ L2(K) is defined by

(2.1) f̂(ξ) =

∫
K

f(x)χξ(x)dx.

It is noted that

f̂(ξ) =

∫
K

f(x)χξ(x)dx =

∫
K

f(x)χ(−ξx)dx.

Furthermore, the properties of Fourier transform on local field K are much similar to

those of on the real line. In particular Fourier transform is unitary on L2(K).

To define the Fourier transform of a function in L2(K), we consider the function

1k. For k ∈ Z, let 1k be the characteristic function of Bk.

Definition 2.1. For f ∈ L2(K), let fk = f1−k, then

f̂(ξ) = lim
k→∞

f̂k(ξ) = lim
k→∞

∫
|x|≤qk

f(x)χξ(x)dx,

where the limit is taken in L2(K).

Theorem 2.2. [25] The Fourier transform is unitary on L2(K).

Theorem 2.3. [25] Let {u(n) : n ∈ N0} be a complete list of (distinct) coset repre-

sentation of D in K+. Then {χu(n) : n ∈ N0} is a list of (distinct) characters on D.

Moreover, it is a complete orthonormal system on D.

Given such a list of characters {χu(n)}∞n=0, we define the Fourier coefficients of a

function f ∈ L1(D) as

f̂
(
u(n)

)
=

∫
D

f(x)χu(n)(x)dx.

The series
∞∑
n=0

f̂(u(n))χu(n)(x) is called the Fourier series of f . From the standard L2-

theory for compact Abelian groups we conclude that the Fourier series of f converges

to f in L2(D) and Parseval’s identity holds:∫
D

∣∣f(x)
∣∣2dx =

∞∑
n=0

∣∣f̂(u(n)
)∣∣2.

Moreover, if f ∈ L1(D) and f̂(u(n)) = 0 for all n ∈ N0 then f = 0 a.e.
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We now impose a natural order on the sequence {u(n)}∞n=0. We have D/B ∼=
GF (q) where GF (q) is a c-dimensional vector space over the field GF (p). We choose

a set {1 = ζ0, ζ1, ζ2, . . . , ζc−1} ⊂ D∗ such that span {ζj}c−1j=0
∼= GF (q). For n ∈ N0

satisfying

0 ≤ n < q, n = a0 + a1p+ · · ·+ ac−1p
c−1, 0 ≤ ak < p, and k = 0, 1, . . . , c− 1,

we define

(2.2) u(n) = (a0 + a1ζ1 + · · ·+ ac−1ζc−1) p
−1.

Also, for n = b0 + b1q+ b2q
2 + · · ·+ bsq

s, n ∈ N0, 0 ≤ bk < q, k = 0, 1, 2, . . . , s, we set

(2.3) u(n) = u(b0) + u(b1)p
−1 + · · ·+ u(bs)p

−s.

This defines u(n) for all n ∈ N0. In general, it is not true that u(m+n) = u(m)+u(n).

But, if r, k ∈ N0 and 0 ≤ s < qk, then u(rqk + s) = u(r)p−k + u(s). Further, it is also

easy to verify that u(n) = 0 if and only if n = 0 and {u(`) + u(k) : k ∈ N0} = {u(k) :

k ∈ N0} for a fixed ` ∈ N0. Hereafter we use the notation χn = χu(n), n ≥ 0.

Theorem 2.4. [25] For n ∈ N0, let u(n) be as defined above. Then

(a) u(n) = 0 if and only if n = 0. If k ≥ 1, then |u(n)| = qk if and only if

qk−1 ≤ n < qk.

(b) {u(n) : n ∈ N0} = {−u(n) : n ∈ N0}.
(c) {u(k) + u(`) : k ∈ N0} = {u(k) : k ∈ N0} for a fixed ` ∈ N0.

In the above Theorem, formulae (b) and (c) are satisfied for the fields of charac-

teristic t but are not satisfied for fields of characteristic zero.

Let the local field K be of characteristic p > 0 and ζ0, ζ1, ζ2, . . . , ζc−1 be as above.

We define a character χ on K as follows:

(2.4) χ(ζµp
−j) =

{
exp(2πi/p), µ = 0 and j = 1,

1, µ = 1, . . . , c− 1 or j 6= 1.

Let us recall the definition of an MRA on local fields of prime characteristic ([10]).

Definition 2.5. Let K be a local field of prime characteristic t > 0 and p be a prime

element of K. A multiresolution analysis(MRA) of L2(K) is a sequence of closed

subspaces {Vj : j ∈ Z} of L2(K) satisfying the following properties:

(a) Vj ⊂ Vj+1 for all j ∈ Z;

(b)
⋃
j∈Z Vj is dense in L2(K);

(c)
⋂
j∈Z Vj = {0};

(d) f(x) ∈ Vj if and only if f(p−1x) ∈ Vj+1 for all j ∈ Z , x ∈ K;

(e) there is a function ϕ ∈ V0, called the scaling function, such that
{
ϕ
(
x− u(k)

)
: k ∈ N0

}
forms an orthonormal basis for V0.
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Since ϕ ∈ V0 ⊂ V1 and {ϕ1,k : k ∈ N0} is an orthonormal basis of V1, we have

(2.5) ϕ(x) =
√
q
∑
k∈N0

ak ϕ
(
p−1x− u(k)

)
,

where ak = 〈ϕ, ϕ1,k〉 and {ak}k∈N0 ∈ `2(N0). Taking Fourier transform of equation

(2.5), we get

ϕ̂(ξ) =
1
√
q

∑
k∈N0

ak χk(ξ)ϕ̂(ξ)

= m0(pξ) ϕ̂(pξ),(2.6)

where m0(ξ) =
1
√
q

∑
k∈N0

ak χk(ξ) is an integral periodic function over L2(D).

Replacing ξ by pξ in equation (2.6), we have

ϕ̂(pξ) = m0(p
2ξ) ϕ̂(p2ξ)

and hence

ϕ̂(ξ) = m0(p
2ξ)m0(p

2ξ) ϕ̂(p2ξ)

Iterating above equation, we get

(2.7) ϕ̂(ξ) =

[
j∏

n=1

m0(p
nξ)

]
ϕ̂(pjξ).

Allowing j →∞ and using ϕ̂(0) = 1, in (2.7), we get

(2.8) ϕ̂(ξ) =
∞∏
n=1

m0(p
nξ).

It then follows from equation (2.6) that m0(0) = 1.

Let Wj, j ∈ Z be the direct complementary subspace of Vj in Vj+1. Assume that

there exists q−1 functions {ψ1, ψ2, . . . , ψq−1} in L2(K) such that their translates and

dilations form an orthonormal bases of Wj, i.e.,

(2.9) Wj = span
{
qj/2 ψ`

(
p−jx− u(k)

)
, k ∈ N0, 1 ≤ ` ≤ q − 1, j ∈ Z

}
.

Since ψ` ∈ W0 ⊂ V1, there exist a sequence {a`k} ∈ l2(N0) such that

(2.10) ψ`(x) =
√
q
∑
k∈N0

a`k ϕ
(
p−1x− u(k)

)
, 1 ≤ ` ≤ q − 1.

Equation (2.10) can be written in the frequency domain as

ψ̂`(ξ) =
1
√
q

∑
k∈N0

a`k χk(ξ)ϕ̂(ξ)

= m`(pξ) ϕ̂(pξ),(2.11)

where m`(ξ) =
1
√
q

∑
k∈N0

a`k χk(ξ), 1 ≤ ` ≤ q − 1.
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Remark 2.6. Let {ψ1, ψ2, . . . , ψq−1} ⊂ L2(K), be the wavelets constructed from the

scaling function ϕ such that |ϕ̂| and m0(ξ) are continuous. Then ψ̂`
(
p−1t

)
= 0 ∀ t ∈

N0.

Lemma 2.7. [1] Let ϕ ∈ L2(K) be a scaling function. Then {ϕ
(
x−u(k)

)
}k∈N0 is an

orthonormal basis of V0 if and only if
∑
k∈N0

∣∣ϕ̂(ξ + u(k)
)∣∣2 = 1 for a.e. ξ ∈ K.

Lemma 2.8. [1] Let {ψ1, ψ2, . . . , ψq−1} ⊂ L2(K) be the wavelets constructed from

the scaling function ϕ. Then |ϕ̂(ξ)|2 =

q−1∑
`=1

∞∑
j=1

∣∣ψ̂`(p−jξ)∣∣2 for a.e. ξ ∈ K.

For n ≥ 0, the basic wavelet packets associated with a scaling function ϕ(x) on

a local field K of prime characteristic are defined recursively by

(2.12) ωn(x) = ωqr+`(x) =
√
q
∑
k∈N0

a`k ωr
(
p−1x− u(k)

)
, 0 ≤ ` ≤ q − 1.

where r ∈ N0 is the unique element such that n = qr + `, 0 ≤ ` ≤ q − 1 holds( see

[1]). For n = 0, we have ω0 = ϕ, the scaling function and for 1 ≤ n ≤ q − 1, we have

the basic wavelets ωn = ψn. Taking r = 0 in (2.12), we obtain

(2.13) ωn(x) =
√
q
∑
k∈N0

a`k ω0

(
p−1x− u(k)

)
, 0 ≤ ` ≤ q − 1.

Taking Fourier transform of equation (2.13) and using identity (2.8), we obtain

ω̂n(ξ) = m`(pξ)
∞∏
j=1

m0(p
jξ).

Using the expansion n =
∑∞

j=1 µjq
j−1, it can be verified that

(2.14) ω̂n(ξ) =
∞∏
j=1

mµj(p
jξ).

3. FOURIER TRANSFORM OF WAVELET PACKETS

In this section, we study some properties of the Fourier transform wavelet packets

on local fields of prime characteristic, constructed in the Section 2.

Theorem 3.1. If {ωn : n ∈ N0} ⊂ L2(K) are the basic wavelet packets associated

with the scaling function ϕ = ω0, then ω̂n(0) = 0 for all n ∈ N0.

Proof. It is obvious that for n > 0, the right-hand side of identity (2.14) contains at

least one term of the type m`(p
jξ), 1 ≤ ` ≤ L, j ∈ Z. Therefore, using the definition

of m`(x) and the fact that m`(0) = 1, result follows.

Theorem 3.2. If {ωn : n ∈ N0} ⊂ L2(K) are the basic wavelet packets associated

with the scaling function ϕ = ω0, then ω̂n(p−1mt) = 0 for all t ∈ N0, where m = qj

for j ∈ Z and |ϕ̂| and |m0| are continuous.



320 M. YOUNUS BHAT

Proof. From the definition of wavelet packets, we have

(3.1) ωqn(x) =
√
q
∑
k∈N0

akωqn
(
p−1x− u(k)

)
.

Equation (3.1) can be reformulated in the frequency domain as

(3.2) ω̂qn(ξ) = m0(pξ)ω̂n(pξ).

On taking m = qj and ξ = qmt = qj+1t, we obtain

(3.3) ω̂n(p−1mt) = ω̂qj(p
−j−1t).

Using Remark 2.6 and equation (3.2), the identity (3.3) can be rewritten as

ω̂n(p−1mt) = m0(p
−j−1t)ω̂qj−`(p

−j−1t)

= m0(p
−j−1t)m0(p

−jt)xsm0(p
−1t)ω̂`(p

−1t)

=

{
j+1∏
r=1

m0(p
−rt)

}
ψ̂`(p

−1t)

= 0.

This completes the proof.

Theorem 3.3. If {ωn : n ∈ N0} ⊂ L2(K) are the basic wavelet packets associated

with the scaling function ϕ = ω0, then

(3.4) |ω̂n(ξ)|2 =

qr−1∑
s=0

∣∣ω̂qrn+s(p−rξ)∣∣2 .
Proof. Using identities (2.5)-(2.11) and Fourier transform of wavelet packets, we have

|ω̂qn(p−1ξ)|2 +

q−1∑
`=1

|ω̂qn+`(p−1ξ)|2 = |m0(ξ)ω̂n(ξ)|2 +

q−1∑
`=1

|m`(ξ)ω̂n(ξ)|2

= |ω̂n(ξ)|2
(
q−1∑
`=0

|m`(ξ)|2
)
.(3.5)

Under the assumption that the matrix M(ξ) =
[
m`

(
pξ + pu(k)

)]q−1
`,k=0

formed by the

integral periodic functions m`, 1 ≤ ` ≤ q− 1 is unitary for a.e. ξ ∈ D, the sum inside

the braces in the above system will be equal to 1. Hence, the equation (3.5) reduces

to

|ω̂n(ξ)|2 = |ω̂qn(p−1ξ)|2 +

q−1∑
`=1

|ω̂qn+`(p−1ξ)|2.

On iterating the above system and using Lemma 2.8, we get the result.

Remark 3.4. For n = 0, equation (3.4) reduces to

(3.6) |ϕ̂(ξ)|2 = |ω̂0(ξ)|2 =

qr−1∑
r=0

∣∣ω̂s(p−rξ)∣∣2 .
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In the following theorem, we provide the characterization of wavelet packets in

terms of Fourier transform.

Theorem 3.5. If {ωn : n ∈ N0} ⊂ L2(K) are the basic wavelet packets associated

with the scaling function ϕ = ω0, then for r ∈ N0,∑
k∈N0

qr−1∑
s=0

∣∣ω̂s(p−r(ξ + u(k)
))∣∣2 = 1, for a.e. ξ ∈ K.

Proof. From equation (3.6), we have

(3.7)
∣∣ϕ̂(ξ + u(k)

)∣∣2 =
∣∣ω̂0

(
ξ + u(k)

)∣∣2 .
Therefore, using Theorem 3.3, the right hand side of the identity (3.7) can be rewritten

as ∣∣ϕ̂(ξ + u(k)
)∣∣2 =

qr−1∑
s=0

∣∣ω̂s(p−r(ξ + u(k)
))∣∣2 .

Hence, using Lemma 2.7, we have

∑
k∈N0

qr−1∑
s=0

∣∣ω̂s(p−r(ξ + u(k)
))∣∣2 =

∑
k∈N0

∣∣ϕ̂(ξ + u(k)
)∣∣2 = 1.

This completes the proof.

As a consequence of Theorem 3.5, we obtain a new characterization of wavelet

packets that have been constructed in Section 2

Theorem 3.6. If {ωn : n ∈ N0} ⊂ L2(K) are the basic wavelet packets associated

with the scaling function ϕ = ω0, then for r ∈ N0,

(3.8)
∑
j∈Z

∑
k∈N0

qr−1∑
s=0

∣∣ω̂s(p−j−r(ξ + u(k)
))∣∣2 = 1, for a.e. ξ ∈ K.

Proof. Using Theorem 3.3, we have

|ω̂n(ξ)|2 = |ω̂qn(p−1ξ)|2 +

q−1∑
`=1

|ω̂qn+`(p−1ξ)|2.

A simple iteration of this result yields

|ω̂n(ξ)|2 =

qr−1∑
s=0

∣∣ω̂qrn+s(p−rξ)∣∣2 .
Hence

(3.9) |ω̂n(ξ)|2 =

qr−1∑
s=0

∣∣ω̂qrn+s(p−rξ)∣∣2 =

qr+1−1∑
n=qr

∣∣ω̂n(p−rξ)
∣∣2 .



322 M. YOUNUS BHAT

Since ω` = ψ`, 0 ≤ ` ≤ q − 1, Lemma’s 2.7 and 2.8 give∑
k∈N0

∣∣ϕ̂(ξ + u(k)
)∣∣2 =

q−1∑
`=1

∞∑
j=1

∑
k∈N0

∣∣ω̂`(p−j(ξ + u(k)
))∣∣2 .

Hence
q−1∑
`=1

∞∑
j=1

∑
k∈N0

∣∣ω̂`(p−j(ξ + u(k)
))∣∣2 = 1, for a.e. ξ ∈ K.

As the wavelet space Wj can not be decomposed greater then j times, it follows from

equations (3.8) and (3.9) that r ranges from 1 to j. This completes the proof.

The following theorem, the main result of this section shows the existence of a

maximal decomposition property of wavelet packets.

Theorem 3.7. If {ωn : n ∈ N0} ⊂ L2(K) are the basic wavelet packets associated

with the scaling function ϕ = ω0, then the expression

Dω(ξ) =
∞∑
j=1

∑
k∈N0

qr+1−1∑
n=qr

∣∣ω̂n(p−j−r(ξ + u(k)
))∣∣2 .

is well defined for a.e. ξ ∈ K. Moreover

∫
D

Dω(ξ)dξ = 1.

Proof. For the proof of the theorem, it is sufficient to prove only the second part of

the theorem. So, we have∫
D

Dω(ξ)dξ =

∫
D

∞∑
j=1

∑
k∈N0

qr+1−1∑
n=qr

∣∣ω̂n(p−j−r(ξ + u(k)
))∣∣2 dξ

=
∞∑
j=1

∑
k∈N0

qr+1−1∑
n=qr

∫
D

∣∣ω̂n(p−j−r(ξ + u(k)
))∣∣2 dξ

=
∞∑
j=1

∑
k∈N0

qr+1−1∑
n=qr

∫
k+D

∣∣ω̂n(p−j−r(ξ))∣∣2 dξ
=

∞∑
j=1

qr+1−1∑
n=qr

q−j−r
∫
K

|ω̂n(ξ)|2 dξ

=
∞∑
j=1

q−j−r
qr+1−1∑
n=qr

‖ω̂n‖22

=
∞∑
j=1

q−j−rqr‖ω̂n‖22

=
∞∑
j=1

q−j‖ω̂n‖22 = 1.

This completes the proof.
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4. CONCLUSION

The Fourier transform due its deep significance has subsequently been recognized

by mathematicians and physicists. Many applications, including the analysis of sta-

tionary signals and real-time signal processing, make an effective use of the Fourier

transform in time and frequency domains. In the present paper, we have study fourier

transform of wavelet packets on local fields. Results 3.5 and 3.6 give the characteriza-

tion of wavelet packets on local fields. Theorem 3.7 shows the existence of a maximal

decomposition property of wavelet packets. These results provide new constructed

wavelet packages in terms of Fourier transform. They also provide a way for obtaining

new characterization of wavelet packets in terms of low pass and high pass filters.
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