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ABSTRACT. Spatial Modeling Techniques for Lattice Data were discussed. In addition to Ordi-

nary least squares, a conventional method of modeling spatial data; various types of spatial regres-

sion techniques, such as Simultaneous Autoregressive (SAR), Conditional Autoregressive (CAR),

Generalized Least Squares (GLS), and Geographically Weighted Regression (GWR) were discussed.

Comparative studies of these modeling techniques were carried out using a real world dataset and an

artificially generated spatial dataset.The results showed that GWR was more suitable for the pur-

pose of incorporating spatial autocorrelation of the data and assessing the local parameter estimates

of the model.
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1. INTRODUCTION

Traditional modeling techniques used in spatial data analysis are based on stan-

dard regression techniques which assume that the observations in the data are inde-

pendent. These techniques are based on the implicit assumption that the observations

are independent to one another, a condition highly unlikely to occur in spatiotem-

poral phenomena. This technique violates the fundamental principle of geography,

well known as Tobler’s First Law of Geography (Tobler 1979) which states that ev-

erything is related to everything else, but near things are more closely related than

the distant things. In spatially dependent data, the value of a variable at a location

is dependent on the value of that variable in a neighboring location. This causes the

errors of the regression model to be spatially autocorrelated (Wall, 2004). When the

assumption of independence is invalid, the effects of autocorrelated predictors tend

to be exaggerated (Gumpertz et al. 1997). Due to this, the degree of correlation will

be higher than it should be, p-values will be significant when they are actually not,

and coefficient of determination (R2) will be higher than it should be.
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The response in case of spatiotemporal / spatially autocorrelated data are usually

modeled by autoregressive models (Simultaneous Autoregressive (SAR) and Condi-

tional Autoregressive (CAR)). Since their first formulation, which is usually credited

to Whittle (1954) and Besag (1974), these models have been used extensively in many

fields of scientific research. The SAR model is preferred in likelihood inference, while

the CAR model is more common in Bayesian inference as a prior distribution for

spatially structured random effects. In the study of covariance structure implied by

these models, Wall (2004) concluded that the implied correlation between a pair of

neighboring areas is negatively associated with the number of neighbors of each re-

gion. She also showed that the association is not simple and much variability still

remains unexplained.

Though these models were first developed for the analysis of regular lattice data, oc-

curring for instance in agricultural field experiments or when decomposing an image

in pixels, they are being used these days for irregular lattice data as well. For the

analysis of lattice data, CAR and the SAR models are analogous to the stationary

autoregressive time series model defined on the integers. i.e., SAR and CAR models

are analogous in functional form and Markov property, respectively (Cressie, 1993).

Despite the popularity of these models, some of their properties are not completely

understood (see Wall, 2004).

Some research studies have followed a completely different way to consider the spatial

pattern. These studies have used to model the response as a function of geographic

coordinates (Miller et al. 2007). Pereira and Itami (1991) modeled a trend surface

to the geographic coordinates and combined this information with a regression model

using environmental predictor variables (Le Duc et al. 1992; Lichstein et al., 2002).

While inclusion of geographic coordinates as predictors greatly improves the model

accuracy, this effect should be referred to as geographic dependence, rather than spa-

tial dependence (Miller et al. 2007). Besag (1972) suggested an autologistic model

(a logistic model which incorporates spatial dependence in binary spatial data) to

model a binary response. Dennis et al. (2002) used an autologistic model to model

the presence of butterfly species and found that neighborhood models were more ef-

ficient than the models that used geographic coordinates. Tognelli and Kelt (2004)

compared ordinary least squares regression model with CAR and SAR model, and

found that the CAR and SAR models were more efficient in achieving a better fit

of the model and that relative importance of the predictor variables shifted in such

models.

The main purpose of this research work is to carry out a brief comparative study

of different modeling techniques for spatial data. The results of the CAR and SAR

models will be compared with the model fitted using Ordinary Least Squares (OLS),
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Generalized Least Squares (GLS), and finally with Geographically Weighted Regres-

sion (GWR). In section 2, the different models such as CAR, SAR, OLS, GLS, and

GWR are defined. Section 3 presents a comparative study of these models using a

real-world data set with crop residue yield potential, temperature, and precipitation

of two states of the North-Central region (Illinois and Indiana) of the USA followed

by an artificially generated spatial data set. Results of these modeling approaches

and discussion are in section 4 and summary of the results are in section 5.

2. DESCRIPTION OF MODELS

2.1. CONDITIONAL AUTOREGRESSIVE (CAR) MODEL. As defined by

Wall (2004), the Conditional Autoregressive (CAR) model is specified through a set

of conditional distributions

(2.1) yi|yj : j 6= i ∼ N(µi +
n∑

j=1

cij(yj − µj), τ
2
i )

where E(yi) = µi, τ
2
i is the conditional variance, cij are known or unknown constants

with cii = 0 for all i = 1, 2, ..., n. Then, for finite n, we form C = (cij) and by the

factorization theorem (Besag, 1974), Y has a multivariate normal distribution given

by

(2.2) Y ∼ Nn(µ, (I −C)−1M )

where

(2.3) µ = (µ1, µ2, ..., µn)T

and

(2.4) M = diag(τ 2i )

for all i = 1, 2, ..., n. Also, I is an n×n identity matrix. For a CAR model to be well

defined, we require I −C to be nonsingular.

2.2. SIMULTANEOUS AUTOREGRESSIVE (SAR) MODEL. Wall (2004)

defines a SAR model by simultaneous equations

(2.5) yi = µi +
n∑

j=1

sij(yj − µj) + εi

where ε = (ε1, ε2, .., εn)T ∼ N(0,D) withD diagonal, E(yi) = µi, and sij are known or

unknown constants with sii = 0 for all i = 1, 2, ..., n. This model is called simultaneous

because the random variables are simultaneously determined by the n equations in

(2.5). If n is finite, we form S = (sij). The joint distribution of Y = (y1, y2, .., yn)T

is given by,

(2.6) Y ∼ N(µ, σ2(I − S)−1(I − S′)−1)
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It is important to note that for the SAR model to be defined, we require (I − S) to

be nonsingular (Bivand et al. 2008 and Schabenberger and Gotway 2004).

2.3. ORDINARY LEAST SQUARES (OLS) MODEL. In the general linear

model

(2.7) Y = Xβ + ε,

Y is an n × 1 vector of dependent or response variables, X is the design ma-

trix of independent (explanatory) variables, which includes a column of 1s for the

intercept, β is the vector of regression coefficients and ε is a random vector of resid-

uals whose distribution is N(0, σ2) (Kutner, 2004). The residuals are assumed to be

independently and identically distributed with mean 0 and the constant variance, σ2 .

The maximum likelihood estimate of β is given by

(2.8) β̂ = (XTX)−1(XTY )

2.4. GENERALIZED LEAST SQUARES (GLS) MODEL. In generalized least

squares (GLS) model (Pinhiero and Bates, 2000, pp. 204), the residuals are considered

themselves a random variable which has a covariance structure given by,

(2.9) Y = Xβ + ε, ε ∼ N(0, σ2Σ)

where Σ is a variance covariance matrix of the model residuals which is also a positive

definite matrix. Here, the error variances are considered random, and hence the

random effect σ represents both the spatial structure of the residuals from the fixed

effects model, and the unexplainable noise. The solution to (2.9) is found by least

squares, which is given by,

(2.10) β̂ = (XTΣ−1X)−1(XTΣ−1Y )

The gls (Generalized Least Squares) function of the nlme library in R was used

to estimate model parameters.

2.5. GEOGRAPHICALLY WEIGHTED REGRESSION (GWR) MODEL.

As described above, standard regression techniques model the data assuming that the

errors are independent. On the other hand, the spatial modeling techniques such as

CAR, SAR, and GLS address the local nature of the data by explicitly modeling the

covariance structure of the error terms. These later techniques assume spatial sta-

tionarity and are location independent; and that the results are eventually equations

with global parameter estimates, in that the relationships they describe between the

response and the predictor variables are constant throughout the region of interest



SPATIAL MODELING FOR LATTICE DATA 329

(Miller et al. 2007). Another possibility could be to fit a Geographically Weighted

Regression (GWR) model (Brunsdon et al. 1999) which addresses the issue of spatial

stationarity directly by allowing the relationships to vary over space so that param-

eter estimates of the regression model do not need to be the same everywhere. As

defined by Brunsdon et al. 1999, GWR is an extension of OLS regression model given

by

(2.11) yi =
∑
k

Xikβk + εi

by allowing the regression parameter estimates to vary over space as given by

(2.12) yi =
∑
k

Xikβk(ui, vi) + εi

where (ui, vi) are the geographic coordinates of the i th observation in space. The

vectors of estimated coefficients for GWR models are given by

(2.13) β̂i = (XTWiX)−1(XTWiY )

where Wi represents the square matrix of weights relative to the position i. Detailed

explanations about the shape, bandwidth, and the functional form of the spatial kernel

are given in Fotheringham et al. 2002. The spgwr package (Bivand and Yu 2013)

for GWR in the statistical software package R, version 3.0.1 (R Development core

team 2013) was used to estimate model parameters. We have chosen adaptive kernel

bandwidth. The kernel bandwidth is estimated using cross validation technique,

and used a Gaussian distance decay function. GWR is often referred to as a local

regression model as it provides parameter estimates to local statistics and hence it is

more appropriate when the relationships vary spatially (Fotheringham et al. 2002).

Tulbure et al. 2011, Brown et al. 2012 have shown that GWR performs better than

OLS regression model in modeling spatially varying data. Pez et al. 2011 mention

that GWR is not recommended in situations with small sample sizes (n ≈ 160) in

their experiments), so it is important to note that caution needs to be exercised using

GWR for the purpose of assessing spatial heterogeneity of individual parameters when

analyzing data sets with small samples. Jetz et al. 2005 suggest that GWR should

not be used instead of OLS regression, but rather as a supplement to OLS regression.

Bivand et al. 2008 emphasize that GWR is an exploratory technique mainly intended

to specify the location where nonstationarity is taking place on the map.

3. APPLICATION

3.1. DATA. The real world data set was acquired from the USDA National Agricul-

tural Statistics Service (USDA-NASS, 2009). Two states, Illinois and Indiana, were

selected for this comparative study. The data set consists of the variables: County
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names, FIPS ID of the county, crop residue yield potential, temperature, and precipi-

tation for the years 1970-2008. For this analysis, a subset of the data for the year 2008

was considered. The dry crop residue yield potential (Mg ha-1) was calculated using

crop yield data collected from the USDA-NASS, 2009; temperature was the mean

temperature ◦ C during crop growing seasons (April-October), and precipitation was

the annual precipitation (mm) derived from the monthly gridded PRISM weather

data. The crop residue yield potential was considered as a dependent variable and

the climate variables temperature and precipitation were considered as independent

variables. The original version of the data set with crop residue yield potential, tem-

perature and precipitation for the years 1970 to 2008, has already been analyzed by

averaging over time and then Conditional Autoregressive and Simultaneous Autore-

gressive models (Schabenberger and Gotway 2004) were fit (Chintala et al., 2014) for

modeling crop residue yield potential. The second data set was an artificially gener-

ated spatial data set for 400 locations.

3.2. MODELING CROP RESIDUE YIELD POTENTIAL OF TWO STATES

(ILLINOIS AND INDIANA) OF THE US. CAR, SAR, OLS, GLS, and GWR

regression models were fit for the crop residue yield potential as a function of two

climate variables (temperature and precipitation) for 194 counties of the two states

Illinois and Indiana. We compared the performance of the models using Akaike Infor-

mation Criterion (AIC) and Moran’s I. The conventional way of interpreting AIC is

that the smaller the AIC, the better the performance of the model in explaining the

response. Moran’s I measures the degree of spatial autocorrelation of the regression

residuals. Global Moran’s I statistic was calculated to test the presence of spatial au-

tocorrelation of the residuals under all the models. Its value ranges from -1 to 1 where

the values of 1, 0, and -1 respectively indicate perfect positive spatial autocorrelation,

no spatial autocorrelation, and perfect negative spatial autocorrelation.

4. RESULTS AND DISCUSSION

The results from the following table (corresponding to the analysis of real world

data set) show that the GWR model has the smallest value of AIC. The table also

shows that residuals under CAR, SAR, and GWR models are negatively spatially

autocorrelated while those under the OLS and GLS models are positively spatially

autocorrelated. On comparison, the residuals under SAR and GWR models exhibit

poor spatial autocorrelation while those under the rest of the models exhibit moder-

ate spatial autocorrelation. Similarly, from the output of the analysis of artificially

generated spatial data, we see that AIC values for CAR, SAR, and GWR are very

close to each other. The Moran’s I for residuals of CAR, SAR, and GWR models are

smaller compared to the other two models. It is very important to note that GWR
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incorporates the spatial autocorrelation and also addresses the local nature of the

data, and, hence, we can conclude from these data analyses that the GWR model is

the most suitable among these five regression models.

Table 1. Comparison of models using AIC and Moran’s I for residuals

Models
Real World Data Set Generated Data Set

AIC Moran’s I AIC Moran’s I

OLS 629.20 0.35 −124.4118 0.196614762

CAR 577.71 −0.23 −151.4060 −0.138195393

SAR 583.80 −0.04 −152.3936 0.004871265

GLS 461.23 0.50 −137.1612 0.196724377

GWR 448.72 −0.0034 −152.3911 0.159412444

It should be noted that CAR requires a symmetric matrix of spatial weights (Sch-

abenberger and Gotway, 2004) and models autocorrelation within the local neighbor-

hood. CAR model is more suitable for large raster datasets. It is also used as a

prior in hierarchical Bayesian modeling of spatial data. On the other hand, SAR

does not require a symmetric matrix of spatial weights and models a gradual decay in

autocorrelation across multiple neighborhoods. It is widely used method of analyzing

irregular lattices. Maps showing spatial autocorrelation of residuals under different

models (Figure 1) for an artificial data indicate that there is not much difference in

the spatial pattern of the CAR, SAR, and GWR models. The map of the GLS resid-

uals shows that there is somewhat stronger positive autocorrelation of the residuals.

Traditional modeling techniques used in spatially varying data assume that the

observations in the data are independent to one another, a condition unlikely to oc-

cur in spatial data. When untreated, the spatial dependency of the data can create

underestimated standard errors, resulting in Type I errors (Legendre 1993; Legendre

and Legendre 1998; Legendre et al. 2002). The consequences of such spatial de-

pendency also could be that correlation coefficients and coefficients of determination

of the regression model will appear higher than they really are. In addition, the

standard errors might appear smaller than they should be which gives us the false

impression that the spatial predictions we make are better than they really are. The

another problem caused by such dependency of spatial data is that each observation

provides less information about the data and the degrees of freedom used in analyses

are exaggerated (Miller et al. 2007).

5. SUMMARY

In this paper, we briefly reviewed different modeling techniques for spatial data

and provided a brief review of the literature. It presented a comparative study of OLS,



332 MITRA LAL DEVKOTA1 AND GARY HATFIELD2

Figure 1. Plots showing spatial autocorrelation of residuals under

different models. From left to right: Residuals under OLS, CAR, SAR,

GLS and GWR models

CAR, SAR, GWR, and GLS models using a real-world data set with crop residue yield

potential, temperature, and precipitation of two states of the North-Central region

(Illinois and Indiana) of the USA followed by an artificially generated data set. The

results from these data analyses showed that GWR was more suitable for the purpose

of incorporating spatial autocorrelation of the data and assessing the local parameter

estimates of the model.
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