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ABSTRACT. In this paper, iterative operator-splitting method is used to solve the Fisher’s equa-

tion numerically. We compare the results to noniterative splitting one. This method is based on

splitting the problem into sub-equations, each sub-equation combined with iterative scheme is solved

via suitable integrators. To obtain stability criteria for the proposed method, we perform Von Neu-

mann analysis. The numerical results obtained by iterative splitting method and the noniterative

splitting method are compared with the exact solutions that was given by Bastani [3] and Wang [17].

We showed that the iterative splitting method is as good as strang splitting method.

AMS (MOS) Subject Classification. 39A10.

1. INTRODUCTION

Fisher’s equation is a parabolic type of partial differential equations which model

the population growth in mathematical ecology. Various methods have been devel-

oped to solve this equation numerically, for example finite difference method [2, 13],

recursion scheme [15], sinc collocation method [1], operator-splitting methods [7, 4],

see [14] for other methods. Geiser et. al. in [7] have shown that the traditional

operator-splitting apart from its benefits has several drawbacks: 1) For noncommut-

ing operators, there may be a very large constant in the local splitting error, requiring

the use of an unrealistically small splitting time-step, 2) Within a full splitting step

in one subinterval, the inner values are not an approximation to the solution of the

original problem, 3) Splitting the original problem into the different subproblem with

one operator (i.e., neglecting the other components) is physically correct, see for ex-

ample the Strang splitting, but the method is physically questionable when we aim to

get consistent approximation after each inner step because we lose the exact starting

conditions. In this paper we use the iterative operator splitting method, to avoid

those mentioned situations.

Received January 27, 2017 1061-5369 $15.00 c©Dynamic Publishers, Inc.



396 D. A. HAMZAH, J. M. TUWANKOTTA, AND Y. SOEHARYADI

A similar method has been applied to KdV equation see Gücüyenen et.al [11].

They showed the method gives the least numerical error in comparison with other

noniterative splitting method.

This paper is organized as follows, in Section 2 outline of the iterative splitting

method is presented. Stability analysis of the method which based on Fisher equation

is derived in Section 3. The application of the method to Fisher’s equation is presented

at section 4 along with the numerical implementation and discussion at section 5.

2. OUTLINE OF THE METHOD

Let X be a Banach space, A,B : X→ X be bounded linear operators. Consider

the abstract Cauchy problem in X

(2.1)
c′(t) = (A+B)c(t), t ∈ R+ ∪ {0},
c(0) = c0 ∈ X

where c0 is initial condition.

Let [0, T ] be time interval with arbitrary but fixed T > 0 and 0 = t0 < t1 <

t2 < · · · < tN = T be a partition of [0, T ]. The time step ∆tn = tn+1 − tn for

n = 0, 1, . . . , N − 1. Let us now consider time interval [tn, tn+1]. The iterative

splitting method solves the following problems consecutively for i = 1, 3, . . . , 2m+ 1

c′i(t) = Aci(t) +Bci−1(t),(2.2)

c′i+1(t) = Aci(t) +Bci+1(t), t ∈ [tn, tn+1](2.3)

Here c0(t) ≡ 0 is the initial guess, c1(t
0) = c0 is initial condition. For the subsequent

time interval as well as next iteration, the initial guess is ci−1(t) = c2m(t). For example

if i = 3 then m = 1, hence c2(t) is our initial guess, which has been determined from

the previous computation.

The scheme (2.2) and (2.3) is an iterative method, in which each step includes

both operators A and B. Hence, in these equations, there is no actual separation

of the different physical processes. We would like to apply this spitting method to

Fisher’s equation which is nonlinear. Thus the method is not directly applicable.

As is shown in Geiser and Noack [9], this problem can be solved by introducing a

variation in the method to handle nonlinearity of a certain type. In section 4, we will

modify the Fisher’s equation to fit the method proposed in Geiser and Noack [9].

3. STABILITY ANALYSIS OF ITERATIVE SPLITTING METHOD

ON FISHER EQUATION

In this section, we will investigate the stability analysis of iterative splitting

method applied to Fisher’s equation via Von Neumann approach. Suppose u(x, t) is
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a smooth real valued function with variable t ∈ R+ ∪ {0} and x ∈ [a, b] ⊂ R. The

initial-value problem of Fisher’s equation in nondimensional form, is as follows:

(3.1)
ut = uxx + u(1− u) t ∈ (0, T ], x ∈ (a, b)

u(x, 0) = u0(x) x ∈ [a, b].

where u0 is continuous real valued function from [a, b] to R. Applying the iterative

splitting schemes to eq. (3.1), we have the following scheme:

u′i = (ui)xx + ui−1(1− ui−1)(3.2)

u′i+1 = (ui)xx + ui(1− ui+1)(3.3)

where i = 1, 3, . . . , 2m + 1. In this approach, it is not necessary to specify a spatial

discretization technique. In the algorithm (3.2) and (3.3) we deal with nonlinear term

which comes from the reaction part of f(u) = u(1− u).

Let u = u∗ be a steady state of eq. (3.1). By taking the first two terms of Taylor

series around u∗, we approximate f(u) with linear form. Hence the equation (3.1)

becomes

(3.4) ut = uxx + (1− 2u∗)(u− u∗).

Eq. (3.1) has two steady states that is u∗1 = 0 and u∗2 = 1 as unstable and stable

equilibrium respectively (see [2, 15]). Putting u∗ = 1 to eq.(3.4) and appying itterative

splitting method we have the following scheme

u′i = L1ui + L2ui−1 + 1,(3.5)

u′i+1 = L1ui + L2ui+1 + 1,(3.6)

where L1 = ∂2

∂x2 , L2 = −1 and i = 1, 3, . . . , 2m+ 1. Combining scheme (3.5) and (3.6)

with second order midpoint rule, we have

(3.7)
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By taking Fourier transform according to the formula

(3.8) ũ(ω) =
1√
2π

∫
R
e−iωxu(x)dx.

Eq. (3.7) can be put in the following matrix form

(3.9)
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The eq. (3.9) can be written in the following form

(3.10) ũn+1 = Ãũn + k.
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The eigenvalues of Ã are λ1 =
1−∆t

2
ω2

1+∆t
2
ω2 , λ2 =

1−∆t
2

1+∆t
2

and for stability criterion

eigenvalues must be |λi| ≤ 1, i = 1, 2. However this holds for any choice of ∆t and

ω, hence the method is unconditionally stable. Note that this approach is advanta-

geous since the nonlinear problem can now be analyzed as a linear problem. For the

consistency and convergence of the method see Geiser [7] and Gücüyenen [12].

4. NUMERICAL IMPLEMENTATION

Following Geiser and Noack [9] to handle the nonlinearity term, we define

Au =
∂2

∂x2
u+ u and Bu = −u.

Then the Fisher’s equation can be written as

(4.1) ut = Au+ uBu.

Now let us consider the initial value problem (4.1). Let 0 = t0 < t1 < · · · < tN = T

and a = x0 < x1 < x2 < · · · < xM = b be partition of time interval [0, T ] and spatial

interval [a, b] respectively. The iterative splitting method for (4.1) is

u′i = Aui + ui−1Bui−1,(4.2)

u′i+1 = Aui + uiBui+1(4.3)

where i = 1, 3, . . . , 2m+ 1.

We approximate uxx with centered differences scheme as follows

∂2u

∂x2

∣∣∣∣
(xm,t)

=
1

∆x2
(um+1 − 2um + um−1) +O(∆x2)(4.4)

where ∆x = xm+1−xm as spatial step and m = 0, 1, 2, . . . ,M−1. Applying midpoint

rule at each subinterval [tn, tn+1], n = 0, 1, . . . ,M to the equations (4.2) and (4.3) we

have the following scheme:

un+1
i =

(
I − ∆t
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A
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∆t

2
A
)
uni +(4.5)

+
∆t

4
(un+1
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)
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4
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i + uni ) +(4.6)

+
(
I − ∆t

4
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)
uni+1

)
where ∆t is the time step and iteration starts from i = 1, initial guess u0(t

n) =

u0(t
n+1) = 0, initial conditions u1(t

0) = u0 and u2(t
n) = u0.

Example 1: We now consider the Fisher’s equation ut = uxx + u(1− u) subject

to the initial condition ψ(x) = 1

(1+e

√
1
6x

)2
. Bastani in [3] proposed the exact solution
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∆x error L2 error L∞ CPU time (in seconds)

Iterative splitting 1
4

2.0995× 10−5 4.1191× 10−5 111.8148
1
8

9.7247× 10−5 2.1235× 10−4 111.8725
1
16

2.5832× 10−4 5.3737× 10−4 111.9074

Strang splitting 1
4

6.1883× 10−5 1.1199× 10−4 112.2426
1
8

1.4782× 10−4 2.8065× 10−4 111.0621
1
16

3.112× 10−4 6.0349× 10−4 111.0920

Crank-Nicholson 1
4

6.3402× 10−5 1.9012× 10−4 110.9589
1
8

1.4904× 10−4 9.3095× 10−4 111.1694
1
16

3.1241× 10−4 4.1× 10−3 111.1574

Table 1. Comparison of errors at T = 5 with various ∆x and ∆t =

0.005 for example 1.

as

(4.7) u(x, t) =
1

(1 + e
√

1
6
x− 5

6
t)2
.

We will compare this result with numerical solutions constructed by iterative splitting

method with i = 1, Strang splitting method and Finite difference method with Crank-

Nicholson scheme for x ∈ [0, 1]. The error are measured in L2-norm and L∞-norm.

We use MATLAB to run the code installed in computer with intel core i5 processor

and 4GB of RAM. The results are presented in table 1.

The results show that the iterative operator-splitting method with i = 1 is as

good as the Strang splitting method indicated by the same order of error at 10−4

while the Crank-Nicholson gives larger error at 10−3 for ∆x = 1
16

.

Example 2: Consider the Fisher’s equation ut = uxx +u(1−u) subject to initial

condition:

(4.8) u(x, 0) =

[
1

2
− 1

2
tanh

(
x

2
√

6

)]2
,

and the boundary conditions:

(4.9) lim
x→−∞

u(x, t) = 1 and lim
x→∞

u(x, t) = 0.

The exact soution of this problem is presented in [17] as:

(4.10) u(x, t) =

[
1

2
− 1

2
tanh

(
x

2
√

6
− 5t

12

)]2
.

We use the same setting as example 1 for x ∈ [−20, 20] and the results are presented

in table 2.

The results show that the iterative operator-splitting method is as good as the

Strang splitting method indicated by the same order of error at 10−6 for error L∞
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∆x error L2 error L∞ CPU time (in seconds)

Iterative splitting 1
4

2.1× 10−3 4.3349× 10−6 111.2393
1
8

2.0× 10−3 4.4097× 10−6 114.3591
1
16

2.0× 10−3 9.0714× 10−6 125.9973

Strang splitting 1
4

1.6× 10−3 2.4139× 10−6 110.9700
1
8

1.7× 10−3 4.1471× 10−6 112.0813
1
16

1.8× 10−3 9.1337× 10−6 120.0134

Crank-Nicholson 1
4

4.6× 10−3 5.73× 10−2 111.1888
1
8

4.8× 10−3 1.2× 10−1 111.8068
1
16

4.8× 10−3 2.4× 10−1 118.2812

Table 2. Comparison of errors at T = 5 with various ∆x and ∆t =

0.005 for example 2.

and at 10−3 for error L2, while the Crank-Nicholson gives larger error at 10−1 for

∆x = 1
16

.

5. DISCUSSION

The results show that the iterative splitting method is as good as the Strang

spitting method, based on the order of the difference with the exact solution for

Fisher’s equation. However, by splitting the equation into the diffusion part and the

reaction part, we suspect that the error might be generated more severely in compare

with the iterative splitting method since for the latter, there is no actual splitting of

the operator. For future investigation, we are aiming on comparing the performance

of the Strang splitting method againts the iterative splitting method in dealing with

strong nonlinearity.
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