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ABSTRACT. This paper deals dynamical study of Mays Prey-Predator Model in the case of two
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study is further carried out simulating the behavior exhibited by the interaction two preys and two

predators.
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1. INTRODUCTION

The Mathematician of 20th century claim that most of the research activities

in late twenties and twenty first century will be in the field of mathematical biology

and ecology. The volume of knowledge of mathematics in biology and ecology will be

far more than the existing literature in mathematics. The field of bio-mathematical

research is fast growing day by day and its applications and usefulness are related to

the mutual existence of flora and fauna and ecological balance of the nature. Most of

these problems and their mathematical models are described by the interaction be-

tween different species of animals, micro-organisms and plants in various forms. The

prey-predator model in different forms are mostly used models for such ecological

problems. The main objective of these models are to describe the dynamical behav-

ior of interacting populations. The natural balance and their stability are described

by such models.

The population modeling drew the attention of the biologist and ecologist in 20th cen-

tury as human civilization faced the pressure on limited sustenance food and resources

and imbalance in ecological system due to human population growth. According to

Pulley[5] the European biologist Remond Pearl in 1921 started the modeling study

in collaborations with physicist Alfred Lotka (1880-1949). Lotka, fascinated by the

molecular dynamics in certain chemical reaction has already published an article with

the title “analytical note on certain rhythmic relation in organic system”. He made
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and study of the biological system and its dynamics of the species inside it. He

had considered the herbivore feeding on plants as predator and prey and published

a model in 1920. During the same period an Italian Mathematician Vito Volterra

(1860-1940) independently published a model in 1926 considering the population dy-

namics of two species first as prey and second as predator, in order to analyze the

cyclic variations observed in the Shark and Food fish populations in the Adriatic

sea. After 1926, the above model developed independently is recognized among the

researchers as Lotka-Volterra model.

1.1. LOTKA-VOLTERRA MODEL. Let H(t) and P (t) denote the population of

Prey and predator species at time t. In the absence of predators, the prey population

would grow at natural way, that is proportional to the population of the prey, with

dH(t)

dt
= a1H, a1 > 0

where a1 is per capita rate or intrinsic rate of increase.

In the absence of prey, the predator population would decline at a natural way, with

dP (t)

dt
= −b1P, b1 > 0

where b1 is death rate.

When both predator and prey are present, the presence of both is beneficial to growth

predator species and decline in the prey species.consequently the consumption of prey

by predators results in an interaction rate of decline −α1HP (α1 > 0) in the prey

population H , where α1 measures the attack rate of predators on their prey, and an

interaction rate of growth β1HP (β1 > 0) in predator population P , where β1 measure

of conversion efficiency (the rate at which the predator converts prey biomass in to

new predator offspring ).

When we combine the natural and interaction rates a1H and −α1HP for the prey

population H, as well as the natural and interaction rates −b1P and β1HP for the

predator population, we get the predator-prey system

dH

dt
= H(a1 − α1P ), a1, α1 > 0

dP

dt
= P (−b1 + β1H), b1, β1 > 0

(1.1)

The equation (1.1) along with initial conditions

H(0) = H0, P (0) = P0(1.2)

are known as Lokta-Volterra equations.
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2. MAY’S GENERAL MODEL

In 1971 Robert M May [6] proposed multi species prey-predator model under

Lotka-Volterra assumptions. That is, he made the assumptions of interaction between

preys and predators having no interactions on the same species.

Let Hi(t) and Pi(t), i = 1, 2, 3, · · · , n be the population of n-prey and n-predator

species (or of host and parasite Species) at time t. There is an interaction between

preys and predators only, then the May’s general prey-predator model [6] is given by

dHi

dt
= Hi(t)

{
ai −

n∑
j=1

αijPj(t)

}
,(2.1)

dPi
dt

= Pi(t)

{
− bi +

n∑
j=1

βijHj(t)

}
,(2.2)

i = 1, 2, 3, · · · , n with ai are natural birth rate for prey, bi are natural death rate for

predator, αij are attack rate of predator j on prey i and βij are conversion efficiency of

predator i into its offspring by attacking prey j. Also all ai, bi, αij, βij > 0. But there

is a complexity in dynamical study of interactions among multi-species prey-predator.

After May’s model, various researchers [1, 2, 3, 4, 7, 8] studied the dynamical

behavior of prey-predator interactions in various aspects. But we focused on the

interaction of two prey and two predator having no interactions between the same

species.

2.1. MAY’S TWO PREY AND TWO PREDATOR MODEL. When n = 1,

the model reduce to Lotka-Volterra prey-predator model. For the case of two prey

and two predator, we use n = 2 then the model equation becomes

dH1

dt
= H1(t){a1 − α11P1(t)− α12P2(t)}(2.3)

dH2

dt
= H2(t){a2 − α21P1(t)− α22P2(t)}(2.4)

dP1

dt
= P1(t){−b1 + β11H1(t) + β12H2(t)}(2.5)

dP2

dt
= P2(t){−b2 + β21H1(t) + β22H2(t)}(2.6)

2.2. EQUILIBRIUM POSITIONS. The equilibrium positions means time inde-

pendent solution, so solutions of the system of equations (2.3) - (2.6) when time deriv-

ative of state variable is set as zero, is called equilibrium positions. Let H̄1, H̄2, P̄1, P̄2
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be the equilibrium position of prey-predator. Then

H̄1{a1 − α11P̄1 − α12P̄2} = 0

H̄2{a2 − α21P̄1 − α22P̄2} = 0

P̄1{−b1 + β11H̄1 + β12H̄2} = 0

P̄2{−b2 + β21H̄1 + β22H̄2} = 0

Now above four equations imply

H̄1 = 0 or a1 − α11P̄1 − α12P̄2 = 0(2.7)

H̄2 = 0 or a2 − α21P̄1 − α22P̄2 = 0(2.8)

P̄1 = 0 or − b1 + β11H̄1 + β12H̄2 = 0(2.9)

P̄2 = 0 or − b2 + β21H̄1 + β22H̄2 = 0(2.10)

From the above four equations, we obtain the following six equilibrium positions.

(a)

H̄1 = 0, H̄2 = 0, P̄1 = 0, P̄2 = 0,

The first possible equilibrium is

1EP =
(
H̄1, H̄2, P̄1, P̄2

)
=
(
0, 0, 0, 0

)
(2.11)

(b) If H̄1 = 0, P̄1 = 0, then from equations (2.8) and (2.10),

we obtain P̄2 =
a2
α22

, H̄2 =
b2
β22

.

The second possible equilibrium is

2EP =

(
H̄1, H̄2, P̄1, P̄2

)
=

(
0,

b2
β22

, 0,
a2
α22

)
(2.12)

(c) If H̄2 = 0, P̄2 = 0, then from equations (2.7) and (2.9),

we obtain P̄1 =
a1
α11

, H̄1 =
b1
β11

.

The third possible equilibrium is

3EP =

(
H̄1, H̄2, P̄1, P̄2

)
=

(
b1
β11

, 0,
a1
α11

, 0

)
(2.13)

(d) If H̄1 = 0, P̄2 = 0, then from equations (2.8) and (2.9),

we obtain P̄1 =
a2
α21

, H̄2 =
b1
β12

.

The fourth possible equilibrium is

4EP =

(
H̄1, H̄2, P̄1, P̄2

)
=

(
0,

b1
β12

,
a1
α21

, 0

)
(2.14)
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(e) If H̄2 = 0, P̄1 = 0, then from equations (2.7) and (2.10),

we obtain P̄2 =
a1
α12

, H̄1 =
b2
β21

.

The fifth possible equilibrium is

5EP =

(
H̄1, H̄2, P̄1, P̄2

)
=

(
b2
β21

, 0, 0,
a1
α12

)
(2.15)

(f) Now from equations (2.7) and (2.8)

α11P̄1 + α12P̄2 − a1 = 0

α21P̄1 + α22P̄2 − a2 = 0

Using by cross-multiplication method.

P̄1

a1α22 − a2α12

=
P̄2

a2α11 − a1α21

=
1

α11α22 − α21α12

These results,

P̄1 =
a1α22 − a2α12

α11α22 − α21α12

, P̄2 =
a2α11 − a1α21

α11α22 − α21α12

Also from equations (2.9) and (2.10)

β11H̄1 + β12H̄2 − b1 = 0

β21H̄1 + β22H̄2 − b2 = 0

using cross-multiplication method

H̄1

b1β22 − b2β12
=

H̄2

b2β11 − b1β21
=

1

β11β22 − β21β12

these results,

H̄1 =
b1β22 − b2β12
β11β22 − β21β12

, H̄2 =
b2β11 − b1β21
β11β22 − β21β12

Thus the sixth possible equilibrium is

6EP =


H̄1

H̄2

P̄1

P̄2

 =



b1β22 − b2β12
β11β22 − β21β12
b2β11 − b1β21
β11β22 − β21β12
a1α22 − a2α12

α11α22 − α21α12
a2α11 − a1α21

α11α22 − α21α12


(2.16)

which is only a non zero equilibrium position.
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Let us introduce the new six parameters A1, A2, A3, B1, B2 and B3 defined by

A1 =
a1
α12

− a2
α22

A2 =
a2
α21

− a1
α11

A3 = α11α22 − α12α21

B1 =
b1
β12
− b2
β22

,

B2 =
b2
β21
− b1
β11

,

B3 = β11β22 − β12β21

to reduce the non-zero equilibrium position into simplified form.

Then equation (2.16) becomes

H̄1 =

β12β22

(
b1
β12
− b2
β22

)
β11β22 − β12β21

= β12β22
B1

B3

H̄2 =

β11β21

(
b2
β21
− b1
β11

)
β11β22 − β12β21

= β11β21
B2

B3

P̄1 =

α12α22

(
a1
α12

− a2
α22

)
α11α22 − α12α21

= α12α22
A1

A3

P̄2 =

α11α21

(
a2
α21

− a1
α11

)
α11α22 − α12α21

= α11α21
A2

A3

Therefore

6EP =


H̄1

H̄2

P̄1

P̄2

 =


β12β22

B1

B3

β11β21
B2

B3

α12α22
A1

A3

α11α21
A2

A3

(2.17)

We assume that each of A1, A2, A3, B1, B2, B3 is either positive or negative so that

there are apparently 64 cases. We now further illustrate the above cases under the

following conditions:

Condition 1:

If A1 > 0, A2 > 0 then

a1
α12

− a2
α22

> 0,
a2
α21

− a1
α11

> 0
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which imply

a1
a2

>
α12

α22

,
a1
a2

<
α11

α21

The above two inequalities become

α11

α21

>
a1
a2

>
α12

α22

which results,

α11α22 − α12α21 > 0

It means

A3 > 0

This implies that we can neglect the case for (A1, A2, A3) having sign pattern (+,+,−).

Condition 2:

If A1 < 0, A2 < 0

a1
α12

− a2
α22

< 0,
a2
α21

− a1
α11

< 0

a1
a2

<
α12

α22

,
a1
a2

>
α11

α21

The above two inequalities become

α11

α21

<
a1
a2

<
α12

α22

which results,

α11α22 − α12α21 < 0

It means

A3 < 0

This implies that we can neglect the case for (A1, A2, A3) having sign pattern (−,−,+).

Condition 3:

If B1 > 0, B2 > 0

b1
β12
− b2
β22

> 0,
b2
β21
− b1
β11

> 0

b1
b2
>
β12
β22

,
b1
b2
<
β11
β21

The above two inequality become

β11
β21

>
b1
b2
>
β12
β22
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which results,

β11β22 − β12β21 > 0

It means

B3 > 0

This implies that we can neglect the case for (B1, B2, B3) having sign pattern (+,+,−).

Condition 4:

If B1 < 0, B2 < 0

b1
β12
− b2
β22

< 0,
b2
β21
− b1
β11

< 0

b1
b2
<
β12
β22

,
b1
b2
>
β11
β21

The above two inequalities become

β11
β21

<
b1
b2
<
β12
β22

which results,

β11β22 − β12β21 < 0

It means

B3 < 0

This implies that we can neglect the case for (B1, B2, B3) having sign pattern (+,+,−).

The above four conditions shows that if A1, A2 are positive then A3 must be positive.

Also, if A1, A2 are negative then A3 must be negative. This implies (A1, A2, A3) can

not have the signs

(+,+,−), (−,−,+)

Therefore (A1, A2, A3) can have the signs

(+,+,+), (−,−,−), (+,−,+), (+,−,−), (−,+,+), (−+−)

Similarly if B1, B2 are positive then B3 must be positive. Also if B1, B2 are negative

then B3 must be negative.This implies (B1, B2, B3) can not have the signs

(+,+,−), (−,−,+)

Therefore (B1, B2, B3) can have the signs

(+,+,+), (−,−,−), (+,−,+), (+,−,−), (−,+,+), (−,+,−)

Thus instead of 64 cases there are only 36 cases of signs of (A1, A2, A3)and(B1, B2, B3).
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2.3. STABILITY ANALYSIS OF EQUILIBRIUM POSITIONS. The coef-

ficient matrix of prey-predator model equations (2.3)− (2.6) is

A =


C 0 −α11H1 −α12H1

0 D −α21H2 −α22H2

β11P1 β12P1 E 0

β21P2 β22P2 0 F


where

C = a1 − α11P1 − α12P2

D = a2 − α21P1 − α22P2

E = −b1 + β11H1 + β12H2

F = −b2 + β21H1 + β22H2

The characteristic equation coefficients matrix A is |A − λI| = 0 where I is a 4 × 4

identity matrix and λ is the eigenvalues of coefficient matrix A. The determinants

|A− λI| is the Jacobian of H̄1, H̄2, P̄1, P̄2 which we denote by J(H̄1, H̄2, P̄1, P̄2).

That is

J(H̄1, H̄2, P̄1, P̄2) =

∣∣∣∣∣∣∣∣∣∣
C̄ 0 −α11H̄1 −α12H̄1

0 D̄ −α21H̄2 −α22H̄2

β11P̄1 β12P̄1 Ē 0

β21P̄2 β22P̄2 0 F̄

∣∣∣∣∣∣∣∣∣∣
= 0(2.18)

where

C̄ = a1 − α11P̄1 − α12P̄2 − λ

D̄ = a2 − α21P̄1 − α22P̄2 − λ

Ē = −b1 + β11H̄1 + β12H̄2 − λ

F̄ = −b2 + β21H̄1 + β22H̄2 − λ

Now we analyze the different equilibrium positions.

Case 1:

For the first equilibrium position 1EP =
(
H̄1, H̄2, P̄1, P̄2

)
=
(
0, 0, 0, 0

)

J(0, 0, 0, 0) =

∣∣∣∣∣∣∣∣∣∣
a1 − λ 0 0 0

0 a2 − λ 0 0

0 0 −b1 − λ 0

0 0 0 −b2 − λ

∣∣∣∣∣∣∣∣∣∣
= 0

(a1 − λ)(a2 − λ)(−b1 − λ)(−b2 − λ) = 0(2.19)

This equation gives λ1 = a1, λ2 = a2, λ3 = −b1, λ4 = −b2 which are real and distinct.

Therefore the equilibrium position 1EP =
(
0, 0, 0, 0

)
is always unstable.
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Case 2:

For the second equilibrium position 2EP =

(
H̄1, H̄2, P̄1, P̄2

)
=

(
0,

b2
β22

, 0,
a2
α22

)
Here,

J

(
0,

b2
β22

, 0,
a2
α22

)
= 0

This implies

∣∣∣∣∣∣∣∣∣∣
a1 − α12

a2
α22
− λ 0 0 0

0 a2 − a2 − λ −α21
b2
β22

−α22
b2
β22

0 0 −b1 + β12
b2
β22
− λ 0

β21
a2
α22

β22
a2
α22

0 −b2 + b2 − λ

∣∣∣∣∣∣∣∣∣∣
= 0

∣∣∣∣∣∣∣∣∣∣
α12A1 − λ 0 0 0

0 −λ −α21
b2
β22

−α22
b2
β22

0 0 −β12B1 − λ 0

β21
a2
α22

β2
a2
α22

0 −λ

∣∣∣∣∣∣∣∣∣∣
= 0

On expanding we get

(α12A1 − λ)(β12B1 + λ)(λ2 + a2b2) = 0(2.20)

which yields

λ1 = α12A1, λ2 = −β12B1, λ3 =
√
a2b2 i, λ4 = −

√
a2b2 i

If A1 < 0, B1 > 0 then λ1, λ2 are negative real roots and λ3 and λ4 are imaginary.

Therefore the second equilibrium position 2EP =

(
H̄1, H̄2, P̄1, P̄2

)
=

(
0,

b2
β22

, 0,
a2
α22

)
(i) is neutral if A1 < 0, B1 > 0 .

(ii) otherwise it is unstable.

Case 3:

For the third equilibrium position 3EP =

(
H̄1, H̄2, P̄1, P̄2

)
=

(
b1
β11

, 0,
a1
α11

, 0

)

J

(
b1
β11

, 0,
a1
α11

, 0

)
= 0

∣∣∣∣∣∣∣∣∣∣
−λ 0 −α11

b1
β11

−α12
b1
β11

0 a2 − α21
a1
α11
− λ 0 0

β11
a1
α11

β12
a1
α11

−b1 + b1 − λ 0

0 0 0 −b2 − β21 b1
β11
− λ

∣∣∣∣∣∣∣∣∣∣
= 0

(−β21B2 − λ)(α21A2 − λ)(λ2 + a1b1) = 0(2.21)
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On solving

λ1 = α21A2, λ2 = −β12B2, λ3 =
√
a1b1 i, λ4 = −

√
a1b1 i

If A2 < 0, B2 > 0 then λ1, λ2 are negative real roots and λ3 and λ4 are imaginary.

Therefore the equilibrium position 3EP =

(
H̄1, H̄2, P̄1, P̄2

)
=

(
b1
β11

, 0,
a1
α11

, 0

)
(i) is neutral if A2 < 0, B2 > 0 .

(ii) otherwise it is unstable.

Case 4:

For the fourth equilibrium position 4EP =

(
H̄1, H̄2, P̄1, P̄2

)
=

(
0,

b1
β12

,
a2
α21

, 0

)
Here,

J

(
0,

b1
β12

,
a2
α21

, 0

)
= 0

∣∣∣∣∣∣∣∣∣∣
a1 − α11

a2
α21
− λ 0 0 0

0 a2 − a2 − λ −α21
b1
β12

−α22
b1
β12

β11
a2
α21

β12
a2
α21

−b1 + b1 − λ 0

0 0 0 −b2 + β22
b1
β12
− λ

∣∣∣∣∣∣∣∣∣∣
= 0

(α11A2 + λ)(β22B1 − λ)(λ2 + a2b1) = 0(2.22)

On solving

λ1 = −α11A2, λ2 = β22B1, λ3 =
√
a2b1 i, λ4 = −

√
a2b1 i

If A2 > 0, B1 < 0 then λ1, λ2 are negative real roots and λ3 and λ4 are imaginary.

Therefore the equilibrium position 4EP =

(
H̄1, H̄2, P̄1, P̄2

)
=

(
0,

b1
β12

,
a2
α21

, 0

)
(i) is neutral if A2 > 0, B1 < 0 .

(ii) otherwise it is unstable.

Case 5:

For the fifth equilibrium position 5EP =

(
H̄1, H̄2, P̄1, P̄2

)
=

(
b2
β21

, 0, 0,
a1
α12

)
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Here,

J

(
b2
β21

, 0, 0,
a1
α12

)
= 0

∣∣∣∣∣∣∣∣∣∣
a1 − a1 − λ 0 −α11

b2
β21

−α12
b2
β21

0 a2 − α22a1
α12

0 0

0 0 −b1 + β11b2
β21
− λ 0

β21
a1
α12

β22
a1
α12

0 −b2 + b2 − λ

∣∣∣∣∣∣∣∣∣∣
= 0

(α22A1 + λ)(β11B2 − λ)(λ2 + a1b2) = 0(2.23)

On solving,

λ1 = −α22A1, λ2 = β11B2, λ3 =
√
a1b2 i, λ4 = −

√
a1b2 i

If A1 > 0, B2 < 0 then λ1, λ2 are negative real roots and λ3 and λ4 are imaginary.

Therefore the equilibrium position 5EP =

(
H̄1, H̄2, P̄1, P̄2

)
=

(
b2
β21

, 0, 0,
a1
α12

)
(i) is neutral if A1 > 0, B2 < 0 .

(ii) otherwise it is unstable.

Case 6:

For the sixth equilibrium position

6EP =


H̄1

H̄2

P̄1

P̄2

 =


β12β22

B1

B3

β11β21
B2

B3

α12α22
A1

A3

α11α21
A2

A3

 ,

In this case,

J(H̄1, H̄2, P̄1, P̄2) =

∣∣∣∣∣∣∣∣∣∣
−λ 0 −α11H̄1 −α12H̄1

0 −λ −α21H̄2 −α22H̄2

β11P̄1 β12P̄1 −λ 0

β21P̄2 β22P̄2 0 −λ

∣∣∣∣∣∣∣∣∣∣
= 0

On expanding we get

−λ[−λ3 − α22H̄2β22P̄2λ− α21H̄2β12P̄1] −

α11H̄1[−α22H̄2β11P̄1β22P̄2 + α22H̄2β12P̄1β21P̄2 − β11P̄1λ
2] +

α12H̄1[β21P̄2λ
2 − α21H̄2β11P̄1β22P̄2 + α21H̄2β12P̄1β21P̄2] = 0
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λ4 + λ2(α11P̄1β11H̄1 + α12P̄2β21H̄1 + α21P̄1β12H̄2 + α22P̄2β22H̄2) +

α11P̄1α22P̄2β11H̄1β22H̄2 − α11P̄1α22P̄2β21H̄1β12H̄2 −

α12P̄2α21P̄1β11H̄1β22H̄2 + α21P̄1α12P̄2β21H̄1β12H̄2 = 0

λ4 + λ2(α11P̄1β11H̄1 + α12P̄2β21H̄1 + α21P̄1β12H̄2 + α22P̄2β22H̄2) +

(β11H̄1β22H̄2 − β21H̄1β12H̄2)(α11P̄1α22P̄2 − α12P̄2α21P̄1) = 0

Substituting


H̄1

H̄2

P̄1

P̄2

 =


β12β22

B1

B3

β11β21
B2

B3

α12α22
A1

A3

α11α21
A2

A3

 in above equation, we get

λ4 + λ2(α11α12α22
A1

A3

β11β12β22
B1

B3

+ α11α12α21
A2

A3

β21β12β22
B1

B3

+

α11α21α22
A2

A3

β11β21β22
B2

B3

+ α12α21α22
A1

A3

β11β12β21
B2

B3

) + (β11β22 −

β12β21)β12β22
B1

B3

β11β21
B2

B3

(α11α22 − α12α21)α12α22
A1

A3

α11α21
A2

A3

= 0

A3B3λ
4 + λ2(α11α12α22β11β12β22A1B1 + α11α12α21β12β21β22A2B1 +

α11α21α22β11β21β22A2B2 + α12α21α22β11β12β21A1B2) +

α11α12α21α22β11β12β21β22A1A2B1B2 = 0(2.24)

If A1 > 0, A2 > 0 =⇒ A3 > 0 and if B1 > 0, B2 > 0 =⇒ B3 > 0. In this case all

the coefficient of polynomial equation (2.24) are positive and bi-quadratic form. So

all the roots are complex conjugate.Thus equilibrium position

6EP =


H̄1

H̄2

P̄1

P̄2

 =


β12β22

B1

B3

β11β21
B2

B3

α12α22
A1

A3

α11α21
A2

A3


(i) is neutral if A3 > 0, B3 > 0 or A3 < 0, B3 < 0 .

(ii) is unstable if A3 > 0, B3 < 0 or A3 < 0, B3 > 0.

The above discussion is summarized as the Table 1. The numbers 1 to 6 in the table

corresponds the equilibrium positions 1EP to 6EP respectively, where red colored

number denotes the neutral equilibrium position and other denote the unstable equi-

librium positions.

At the intersection of rows and columns, there appears only one neutral equilibrium

except at the intersection of the row-columns positions (1, 6) and (6, 1). At that po-

sitions there appears two neutral equilibriums.

Thus, out of 36 cases, as presented in Table 1, we observe the following facts.
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Table 1. Stability analysis with sign of A1, A2, A3, B1, B2 and B3.

B1, B2, B3

A1, A2, A3 +,+,+ +,−,+ −,+,+ +,−,− −,+,− −,−,−
+,+,+ 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6

+,−,+ 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6

−,++ 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6

+,−,− 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6

−,+,− 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6

−,−,− 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6

(i) Equilibrium positions 2EP, 3EP, 4EP and 5EP , are in neutral equilibrium in

nine cases.

(ii) Equilibrium position 6EP is in neutral equilibrium in two cases.

(iii) There are two cases in which two equilibrium positions 2EP, 3EP or 4EP, 5EP

can be in neutral equilibrium at the same time.

The facts observed then follows that there are 34 outcome cases which are inde-

pendent of initial conditions and can be predicted only if the signs of
(
A1, A2, A3

)
,(

B1, B2, B3

)
are known. In two cases the outcome dependents on initial conditions

besides sign of
(
A1, A2, A3

)
,
(
B1, B2, B3

)
. That is,

(a) Independent on initial condition

Condition 1:(
+,+,+

)
,
(
+,+,+

)
or
(
−,−,−

)
,
(
−,−,−

)
implies that all four speciesH1, H2, P1, P2

will survive and there will be conservative oscillation about the non zero equi-

librium point.

Condition 2:(
+,−,+

)
,
(
+,−,+

)
implies that the second prey species H2 and first predator

specie P1 will be die out. Thus the first prey species H1 and the second predator

specie P2 will be survive. There will be conservative oscillations about the prey

population H̄1 =
b2
β12

and predator populations P̄2 =
a1
α12

. Similar behavior will

be true for other 31 cases.

(b) Dependent on initial condition

Condition 3:(
+,+,+

)
,
(
−,−,−

)
implies that either H2, P1 will die out and there will be

conservative oscillation about H̄1 =
b2
β21

, P̄2 =
a1
α12

or H1, P2 will die out and

there will be conservative oscillation about H̄2 =
b1
β12

, P̄1 =
a1
α21

.
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Condition 4:(
−,−,−

)
,
(
+,+,+

)
implies that either H1, P1 will die out and there will be

conservative oscillation about H̄2 =
b2
β22

, P̄2 =
a2
α22

or H2, P2 will die out and

there will be conservative oscillation about H̄1 =
b1
β11

, P̄1 =
a1
α11

.

3. NUMERICAL RESULTS AND DISCUSSIONS

The model is analyzed numerically and graphically using Runge-Kutta fourth

order method based on the parameter value from literatures published by researchers

[6, 9]. The numerical and graphical results help to understand the qualitative behavior

of each compartment of preys and predators. The conditions 1 and 3 described above

are numerically and graphically presented below.

(a) Independent on initial condition:

Condition 1:

a1 = a2 = 3, α11 = α22 = 2, α12 = α21 = 1

b1 = 4, b2 = 2, β11 = 3, β12 = β21 = β22 = 1

Also,

A1 =
a1
α12

− a2
α22

=
3

1
− 3

2
= 1.5 > 0

A2 =
a2
α21

− a1
α11

=
3

1
− 3

2
= 1.5 > 0

A3 = α11α22 − α12α21 = 2 ∗ 2− 1 ∗ 1 = 3 > 0

B1 =
b1
β12
− b2
β22

=
4

1
− 2

1
= 2 > 0

B2 =
b2
β21
− b1
β11

=
2

1
− 4

3
=

2

3
> 0

B3 = β11β22 − β12β21 = 3 ∗ 1− 1 ∗ 1 = 2 > 0

Here the sign of
(
A1, A2, A3

)
are (+,+,+) and Sign of

(
B1, B2, B3

)
are (+,+,+).

The non zero equilibrium points are:

H̄1 = β12 β22
B1

B3
= 1 ∗ 1 ∗ 2

2
= 1

H̄2 = β11 β21
B2

B3
= 1 ∗ 3 ∗ −2

3
∗ 1

2
= 1

P̄1 = α12 α22
A1

A3
= 1 ∗ 2 ∗ 3

2
∗ 1

3
= 1

P̄2 = α11 α21
A2

A3
= 2 ∗ 1 ∗ 3

2
∗ 1

3
= 1

Hence the nonzero equilibrium points (H̄1, H̄2, P̄1, P̄2) = (1, 1, 1, 1) exists and

neutral. Now the characteristic equation is

∣∣∣∣∣∣∣∣∣∣
−λ 0 −α11H̄1 −α12H̄1

0 −λ −α21H̄2 −α22H̄2

β11P̄1 β12P̄1 −λ 0

β21P̄2 β22P̄2 0 −λ

∣∣∣∣∣∣∣∣∣∣
= 0
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=⇒

∣∣∣∣∣∣∣∣∣∣
−λ 0 −2 −1

0 −λ −1 −2

3 1 −λ 0

1 0 −λ

∣∣∣∣∣∣∣∣∣∣
= 0

λ4 + 10λ2 + 6 = 0

λ2 =
−10±

√
100− 24

2
= −5±

√
19

Case 1:

If we take initial condition of preys and predators as follows

H1(0) = 1.25, H2(0) = .75, P1(0) = 1.25, P2(0) = .75

Then the graphical results obtained are shown in Figures 1 to 3.

Figure 1. Conservation oscillations of H1(t), H2(t), P1(t) and P2(t)

about the equilibrium position (1, 1, 1, 1).

Figure 2. Projection of the trajectory on the P1P2−plane.
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Figure 3. Projection of the trajectory on the H1H2−plane.

Case 2:

If we change initial condition of preys and predators as follows.

H1(0) = 1.5, H2(0) = 1.1, P1(0) = 1.3, P2(0) = .75

Then the graphical results obtained are shown in Figures 4 to 6.

Figure 4. Conservation oscillations of H1(t), H2(t), P1(t) and P2(t)

about the equilibrium position (1, 1, 1, 1).

Figure 5. Projection of the trajectory on the P1P2−plane.
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Figure 6. Projection of the trajectory on the H1H2−plane.

From graphical representations of Case 1 and Case 2 of condition 1, we ob-

serve the same behavior of population dynamics. So this condition is clearly

independent of initial populations of preys and predators. That is, for any ini-

tial data value, all four species will survive and will oscillates about the nonzero

equilibrium point.

(b) Dependent on initial condition:

Condition 3:

a1 = a2 = 1, α11 = α22 = 1, α12 = α21 = 0.5

b1 = 2, b2 = 2, β11 = 1, β12 = β21 = 2, β22 = 1

Also,

A1 =
a1
α12

− a2
α22

=
1

0.5
− 1

1
= 1 > 0

A2 =
a2
α21

− a1
α11

=
1

0.5
− 1

1
= 1 > 0

A3 = α11α22 − α12α21 = 1 ∗ 1− 0.5 ∗ 0.5 = 0.75 < 0

B1 =
b1
β12
− b2
β22

=
2

2
− 2

1
= −1 < 0

B2 =
b2
β21
− b1
β11

=
2

2
− 2

1
= −1 < 0

B3 = β11β22 − β12β21 = 1 ∗ 1− 2 ∗ 2 = −3 < 0

This implies
(
A1, A2, A3

)
having sign pattern (+,+,+) and

(
B1, B2, B3

)
having

sign pattern (−,−,−).

The nonzero equilibrium position (6EP ) is

H̄1 = β12 β22
B1

B3

= 2 ∗ 1 ∗ −1

−3
=

2

3

H̄2 = β11 β21
B2

B3

= 1 ∗ 2 ∗ −1

−3
=

2

3

P̄1 = α12α22
A1

A3

= 0.5 ∗ 1 ∗ 1

0.75
=

2

3

P̄2 = α11α21
A2

A3

= 1 ∗ 0.5 ∗ 1

0.75
=

2

3
Hence, the nonzero equilibrium position 6EP =

(
2
3
, 2
3
, 2
3
, 2
3

)
exists and unstable



STABILITY ANALYSIS OF MAY’S TWO PREY AND TWO PREDATOR MODEL 453

but the equilibrium positions 4EP = (0, 1, 2, 0) and 5EP = (1, 0, 0, 2) exits and

neutral. Since A2 > 0, B1 < 0 and A1 > 0, B2 < 0.

Here sign of A1, A2, A3 and B1, B2, B3are
(
+,+,+

)
,
(
−,−,−

)
. Thus out come

is dependent on initial condition which implies that either H2, P1 will die out

and there will be conservative oscillation about H̄1 =
b2
β21

, P̄2 =
a1
α12

or H1, P2

will die out and there will be conservative oscillation about H̄2 =
b1
β12

P̄1 =
a1
α21

.

Case 1:

If we take initial condition of preys and predators as follows.

H1(0) = 1.25, H2(0) = .75, P1(0) = 1.25, P2(0) = .75

Then the graphical results obtained are shown in Figures 7 to 9

Figure 7. Conservation oscillations of H1(t) about the equilibrium

point H̄1 = 1 and P2(t) about the equilibrium point P̄2 = 2. But H2(t)

and P1(t) die out.

Figure 8. Projection of the trajectory on the H1P2−plane.
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Figure 9. Projection of the trajectory on the H2P1−plane.

Case 2:

If we change initial condition of preys and predators as follows.

H1(0) = 0.5, H2(0) = 1.25, P1(0) = 0.5, P2(0) = 1.25

The graphical result shown in Figures 10 to 12.

Figure 10. Conservation oscillations of H2(t) about the equilibrium

point H̄2 = 1 and P1(t) about the equilibrium point P̄1 = 2. But H1(t)

and P2(t) die out.

From graphical representations of Case 1 and Case 2 of condition 3, we observe the

different behavior of population dynamics. So this condition is dependent of initial

populations of preys and predators.
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Figure 11. Projection of the trajectory on the H1P2−plane.

Figure 12. Projection of the trajectory on the H2P1−plane.

REFERENCES

[1] H.I. Freedman and Paul Waltman, Persistence in models of three interacting predator-prey pop-

ulations, Mathematical Biosciences, 68:213-231, 1984.

[2] T.K. Kar and Ashim Batabyal, Persistence and stability of a two prey one predator system,

International Journal of Engineering, Science and Technology, 2:174-190, 2010.

[3] T.K. Kar and Saroj K. Chattopadhaya, A dynamic reaction model of prey-predator with stage-

structure for predator, Modern Applied science, 4, 2010.

[4] Krisztina Kiss, Ratio-dependent predator-prey systems, Ph. D. Dissertation,Budapest University

of Technology and Economics, Budapest Egry, 2009.

[5] Lucas C. Pulley, Analyzing predator-prey model using system of linear ordinary differential

equations, Honors Dissertation,Southern Illinois University, Carbondale, 2011.

[6] Robert M. May, Stability in multispecies community models, Mathematical Biosciences, 12:59-79,

1971.

[7] M. Mimura and J.D. Murray, On a diffusive prey-predator model which exhibits pachiness,

Journal of Theoretical Biology, 75:249-262, 1978.

[8] Bonani. Roy and Sankar K. Roy, Analysis of prey-predator three species models with vertebrate

and interval predators, International Journal of Dynamics and Control, DOI 10.1007/s40435-

015-0153-6 2015.

[9] J.N. Kapur, Mathematical Models in Biology and Mediciness, East-West Press Pvt. Ltd., 1985,

ISBN 81-85336-82-2.


