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ABSTRACT. We solve a nonlinear parabolic partial differential equation describing conduction-

radiation heat transfer in a semitransparent medium (glass) numerically using an explicit finite

volume method. To overcome the stability restriction of the explicit method we employ two first order

super time-stepping (STS) schemes based on Chebyshev and Legendre polynomials and compare

their performances.
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1. Introduction

In many industrial processes, temperature is generally very high resulting in a

strong contribution from the radiative transfer to the overall transport of energy

within the system. Conduction-radiation heat transfer problems are usually formu-

lated with highly nonlinear integro-differential equations. Using the diffusion approx-

imation to the radiation transfer equation, the model can be reduced to a nonlinear

parabolic partial differential equations [3]. An excellent survey on radiation transfer

in participating media with major events in the development of engineering treat-

ment can be found in [5]. Since the coupling between the energy equation and the

equation of radiative transfer is highly nonlinear, it is of utmost importance to utilize

efficient and accurate solution procedures. Explicit schemes are simple and accurate

to implement and convenient for parallelization but suffer severely with stability re-

striction on the time step-size. On the other hand, implicit schemes involve iterative

approach to solve the nonlinear systems, hence are moderately efficient, can be com-

putationally very costly for highly nonlinear problems, and comparatively difficult to

implement in practice specially for the problems with intricate geometry. Due to its

popularity (easy to parallelize for high performance computing), there has been some

efforts expended in developing super time-stepping (STS) strategies to overcome the

stability restriction of the explicit schemes [1, 4]. The STS schemes can be viewed as
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the stabilized Runge-Kutta (RK) methods where the updates in the internal stages

s are strategically devised to fulfill the stability condition in contrast to improve the

accuracy or order of the scheme in the standard RK family.

In this paper, we implement two first order STS schemes based on Chebysheb

polynomial (RKC) [1] and Legendre polynomial (RKL) [5] on the finite volume code

for combined conduction radiation transfer in a semitransparent material (glass). The

numerical simulations show that both the STS schemes (RKC and RKL) agree well

and boast large efficiency gains compared to standard explicit methods.

The rest of the paper is organized as follows. Section §2 describes briefly a

mathematical model for conduction-radiation transfer in semitransparent medium

with an arbitrary varying spectral absorption coefficient. Numerical schemes based

on explicit finite volume approximation to the partial differential equation employing

two STS strategies are developed in section §3. Some numerical simulation results

are presented in §4, with conclusions in §5.

2. Mathematical Model

Here we describe a simple model for conduction-radiation heat transfer problem

based on Rosseland approximation [3]. The equation for conservation of energy for

conduction-radiation heat transfer problem in one dimension has the form

ρC(T )
∂T

∂t
=

∂

∂z

(
Kc(T )

∂T

∂z
−Q

)
, 0 < z < l,(2.1)

where ρ is the density of the material, C(T ) is the specific heat capacity of the

medium, Kc(T ) is the thermal conductivity, Q is the radiation heat flux.

The radiation heat flux Q is obtained by integrating the radiation intensity which

is described by a highly nonlinear integro-differential equation. Using Rosseland

approximation to the radiative transfer equation, which is valid for optically thick

medium, the radiative heat flux can be expressed as [5]

Q = − 4π

3a(ν)

∂Ib(ν, T )

∂T

∂T

∂z
.(2.2)

Here a(ν) is the spectral absorption coefficient, ν is the wavelength and Ib is the

spectral intensity of black body radiation given by the Planck function

Ib(ν, T ) =
2hpν

3

c2g

(
exp

(
hpν

kbT
− 1
)) .(2.3)

with cg is the speed of propagation of light in the medium, hp is Plank’s constant and

kb is Boltzmann’s constant.

Adopting a multi-band model for absorption coefficient a(ν), we approximate

the spectral absorption coefficient in each of the frequency band νk ≤ ν ≤ νk+1 by
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a piecewise constant function a(ν). For ν ∈ [νk, νk+1), we define ak := a(ν) = a(νk)

and I
(k)
b (T ) :=

vk+1∫
vk

Ib(ν, T )dν. Thus, equation (2.1) takes the form

ρC(T )
∂T

∂t
=

∂

∂z

(
K(T )

∂T

∂z

)
, 0 < z < l,(2.4)

where

K(T ) = Kc(T ) +

Mk∑
k

4π

3ak

∂I
(k)
b

∂T
.(2.5)

Considering only a diffusion external radiation source, energy balance on the

boundary gives the boundary conditions for the temperature as

Kc(T )
∂T

∂z
(0) = h[T (0)− Tout]− πε

∑
k

[I
(k)
bo (T (0))− I(k)bo (Tout)],(2.6)

−Kc(T )
∂T

∂z
(l) = h[T (l)− Tout]− πε

∑
k

[I
(k)
bo (T (l))− I(k)bo (Tout)],(2.7)

where h is the convection film coefficient, ε is the boundary emissivity in opaque

spectral region, Tout is the surrounding temperature, Kc is the thermal conductivity

of the material and I
(k)
bo (T ) is the blackbody radiation intensity with refractive index

1 for the spectral band k at temperature T .

3. Numerical Method

Here we develop a numerical method based on finite volume discretization to

solve the nonlinear parabolic equation (2.4) with the boundary conditions (2.6)-(2.7)

and initial condition T (z, 0) = T0(z), a specified function of position.

3.1. Finite Volume Discretization. We partition the region (the slab of length l)

into N finite cells Zi = [z
i−1

2
, z
i+

1
2
], i = 1, · · · , N with length ∆z = l/N and define

the nodes zi as the midpoint of the cell Zi.

z
i−1

2
= i∆z, zi = 1

2
(z
i−1

2
+ z

i+
1
2
), i = 1, · · · , N

The boundaries are specified by

z0 = z
1−1

2
= 0, zN+1 = z

N+
1
2

= l.

Let ∆t = tmax/M be the time increments and define the discrete time-steps tj = j∆t,

j = 0, 1, 2, · · · ,M . The initial time is denoted by j = 0, the discrete approximations

for T at the grid (zi, tj) is denoted by T ji . We also regard T ji as an approximation to

mean value of T (z, t) in the cell Zi at time tj.

If an approximate solution T ji is assumed to be known at all grid points at time

tj, a method must be specified to advance the solution to time tj+1, subject to the

boundary conditions.
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Integrating equation (2.4) in the finite cell Zi over the time interval [tj, tj+1]) we

obtain

tj+1∫
tj

z
i+1

2∫
z
i− 1

2

{
ρC(T )

∂T

∂t
− ∂

∂z

(
K(T )

∂T

∂z

)}
dz dt = 0(3.1)

which implies
z
i+1

2∫
z
i− 1

2

(T j+1 − T j)dz ≈ 1

ρC(T )

tj+1∫
tj

(
K(T )

∂T

∂z
(zi+ 1

2
, t)−K(T )

∂T

∂z
(zi− 1

2
, t)

)
dt.(3.2)

We assume that the time increment ∆t is so brief that during the time [tj, tj+1] the

fluxes on the right hand side are constant and arbitrarily close to their values at

any intermediate time interval. Let tj+θ := tj + θ∆t = (1 − θ)tj + θtj+1 to be some

intermediate time with 0 ≤ θ ≤ 1. Then,

T j+1
i = T ji +

∆t

ρC(T j+θi )∆z

(
F j+θ

i−1
2

− F j+θ

i+
1
2

)
, i = 1, · · ·N, j = 0, · · · ,M(3.3)

where

F j+θ

i−1
2

=
1

2

(
K(T j+θi ) +K(T j+θi−1 )

)(T j+θi − T j+θi−1

zi − zi−1

)
.

Here θ = 0 and θ = 1 yield the explicit and fully implicit schemes respectively.

The values at the boundary nodes z0 and zN+1 are updated as follows.

T j+1
0 =

(
αT j+1

1 + hTout − πε
∑
k

(
I
(k)
bo (T j+θ0 )− I(k)bo (Tout)

))
/(α + h)(3.4)

T j+1
N+1 =

(
βT j+1

N + hTout − πε
∑
k

(
I
(k)
bo (T j+θN+1)− I

(k)
bo (Tout)

))
/(β + h)(3.5)

where

α =
Kc(T

j+θ
1 ) +Kc(T

j+θ
0 )

z1 − z0
, β =

Kc(T
j+θ
N+1) +Kc(T

j+θ
N )

zN+1 − zN
.

For the above finite volume control formulation, there are N + 2 equations for N + 2

unknowns T j+1
0 , T j+1

1 , ..., T j+1
N+1 for every time step ∆t leading to a system of algebraic

equations. For any implicit scheme (θ > 0), the resulting system of equations (3.3)

becomes nonlinear which needs to be solved by some iterative methods.

The fully implicit method is unconditionally stable. There is no restriction on

the time step-size except for the accuracy. However the method involves iterative

process, it is not desirable for many practical applications. The explicit method is

easy to implement and very convenient for parallelization but it suffers from a severe

stability restriction on the time step-size ∆t < 1
2

(
ρminC(T )
maxK(T )

)
∆z2 known as Courant-

Friedrichs-Lewy (CFL) condition.
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3.2. Super Time Stepping Schemes. Using (3.3), (3.1), (3.4) and (3.5) we write

the explicit scheme in the following matrix equation.

Tj+1 = R(∆tA)Tj(3.6)

Here Tj =
[
T j0 , T

j
i , · · · , T jn

]T
, R = I−∆tA is the amplification factor, where A is the

coefficient matrix that depends on T ji through K(T ) and C(T ).

The algorithm (3.6) is stable if the spectral radius of R is less than unity. The

stability restriction (CFL condition) is equivalent to ∆t < ∆texpl := 2
λmax

, where λmax

is the maximum eigenvalue of A.

Super time-stepping schemes relax restriction of the CFL condition by requiring

stability at the end of a cycle of s time steps, rather than at the end of each time

step ∆texpl , thus leading to a Runge-Kutta-like method with s stages. The interme-

diate steps are updated non–uniformly using some prespecified simple formula [1] or

recurrence relation [5].

3.2.1. Runge-Kutta Chebychev (RKC) scheme [1]. In this scheme, a super-step ∆τ

is defined which is further subdivided into τk steps with k = 1, 2, ..., s such that the

duration of one super-step ∆τ =
∑s

k=1 τk. The main idea of this scheme is to choose

the intermediate steps τk which ensures stability at the end of the super-step ∆τ and

also maximize the duration of the super-step. Then the explicit scheme (3.6) can be

expressed as

(3.7) Tj+1 = Rs(∆τA)Tj =

(
s∏

k=1

(I − τk A)

)
Tj

where Tj;l denotes the computed temperature T at time j∆τ +
∑l

k=1 τk. Note that

the stability requirement is

(3.8) ρ (Rs(∆τA))) < 1 =⇒ ||ps(λ)|| < 1 ∀ λ ∈ [λmin, λmax]

where ps(λ) =
s∏

k=1

(1− τkλ) and λ are the eigenvalues of A. Using the properties of

modified Chebyshev polynomial, the steps τ1, τ2, · · · , τs are chosen subject to

(3.9) |ps(λ)| ≤ K, (0 < K < 1) and |p′s(0)| =
s∑

k=1

τk is maximal

as

τk = ∆texpl

(
(−1 + ν) cos

(
2k − 1

s

π

2

)
+ 1 + ν

)−1
, 0 < ν <

λmin

λmax

(3.10)

where ν is a damping coefficient. The upper bound on ν in (3.10) is only theoretical.

In practice, we can use large ν (more accuracy, higher cost). Note that if the value
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of ν is zero and s = 1, the explicit scheme is recovered. It can be shown that the

resulting duration of the super-step

(3.11) ∆τ =
s∑

k=1

τk → s2 ∆texpl (as ν → 0).

Thus, s substeps of a superstep cover a time interval s times bigger than s explicit

steps when ν → 0. The length of the superstep ∆τ is determined by the choice of

s and ν and is restricted only by accuracy just like in any unconditionally stable

implicit methods.

3.2.2. Runge-Kutta Legendre (RKL) scheme [5]. Just like the Chebyshev polynomi-

als, Legendre polynomials are also bounded in magnitude by unity and is useful to

develop a stable scheme. As before, let ∆τ be the duration of one superstep consist-

ing of s intermediate steps. Instead of expressing stability polynomial in the factored

form as in (3.7), this method defines Rs in terms of a Legendre polynomials.

(3.12) Rs(z) = as + bsPs(w0 + w1z)

The parameters as = 0, bs = 1, w0 = 1 and w1 = 2
s2+s

are chosen to satisfy the

consistency conditions at first order Rs(0) = 1 and R′s(0) = 1. Thus, the s-stage RK

scheme takes the form

(3.13) Tj+1 = Ps (I − w1∆τA)Tj

Using the three point recursion property of the Legendre polynomials

(k)Pk(x) = (2k − 1)xPk−1(x)− (k − 1)Pk−2(x)(3.14)

the RKL scheme (3.13) can be written as
U0 = Tj

U1 = U0 − µ̄1∆tAU0

Uk = µkUk−1 + νkUk−2 − µ̄k∆tAUk−1, 2 ≤ k ≤ s

Tj+1 = Us

(3.15)

where

µk =
2k − 1

k
, µ̄k =

2k − 1

k
w1, νk =

1− k
k

.

The maximum stable superstep for the above s-stage RKL scheme is given by

∆tmax =
∆tExpl
w1

= ∆tExpl
s2 + s

2
.

Note that unlike RKC, the RKL method described by the recursive relation (3.15)

is consistent and stable at each of the intermediate stages which is more flexible for

output.
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4. Numerical Computations

The numerical procedure developed in the previous section is written in Fortran

90, compiled with Intel Fortran, and ran on Xeon-class processors (AMD Opteron

2378, 2400 MHz, 512 KB cache). Here we present some numerical simulations for a

glass cooling problem with all the physical constants taken from [3]. The physical

system consists of two infinite, parallel plates, between the plates there is a nongray

medium (glass) which absorbs and emits radiation, but does not scatter. The glass

has an initial temperature of 600◦C uniformly distributed and start cooling down

through radiation on the boundary surface which is directly exposed to the surround-

ing temperature of Tout = 26.85◦C. The convection heat transfer coefficient h, the

boundary emissivity ε, refractive index for the glass Rng, thermal conductivity Kc,

specific heat capacity C and density of glass ρ all are taken to be constant throughout

the computations as shown in the Table 1.

Table 1. Assumed constants for numerical computations

Parameter Value Description

Rng 1.46 Index of refraction for glass

KT 1.03× 105 erg-cm/s-K Thermal Conductivity

CT 0.98031× 1010 erg-K/kg Specific Heat Capacity

cg 2.05342× 1010 cm/s Speed of light in glass

ε 0.89 Boundary Emissivity coefficient

ρ 2.22× 10−3 kg/cm−3 Density of glass

h 0.001 Convection film coefficient

Effect of convection in the total energy transport is found to be almost non-

influencing. Absorption coefficient of glass a(k) as a function of wave number for

various spectral band widths is shown in the Table 2.

Table 2. Absorption coefficient for glass

η 1000-2000 2000-2500 2500-3500 3500-6000 6000-10000 10000-200000

a(k) 80.0 35.0 10.0 1.0 0.01 0.02

To compute blackbody radiation intensity in each spectral band, the following

formula was employed.

Ikb (T ) =

ηk+1∫
ηk

2c1η
3

exp
(
c2η
T

)
− 1

dη(4.1)

where c1 = hpc
2
0 and c2 = hpc0k

−1
b . The integral is numerically computed using

6-point Gaussian quadrature (composite) rule [2]. A table of values of I
(k)
b (T ) and
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∂I
(k)
b

∂T
for a wide range of temperature is generated and stored in a file. These values

are then interpolated to compute the total conductivity K(T ) during the calculation.

The blackbody radiation intensity Ikb (T ) for different spectral bands as given by (4.1)

and total conductivity coefficient K(T ) as given by equation (2.5) for the temperature

[280K, 2680K] are shown in Figure 1.

Figure 1. The blackbody radiation (left) and the conductivity (right)

To start simulation, we setup a fairly fine mesh of 200 control volumes with

∆z = 0.005 cm and the time-step ∆t = 0.00001 seconds satisfying the CFL condition.

We present some simulation results up to tmax = 60 seconds.

Temperature profiles at various times (t=1, 10, 30, 60s) obtained from pure con-

duction and the Rosseland approximation are shown in Figure 2. Here, by the pure

conduction, we mean only the radiation term in the energy equation is neglected but

the surface radiation given by the boundary conditions is taken into account. Solu-

tion of the energy equation without consideration of all the radiation effect, being

constant, is of no interest.

Figure 2. Temperature profile at various times using pure conduction

(left), Rosseland approximation (right)
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Figure 2 shows that the Rosseland approximation underestimates temperature

profile whereas the pure conduction overestimates the same. It is natural to expect

higher temperature profile from the pure conduction for the case of glass which has

a very good infrared transmission property for which at temperatures higher than

400◦C radiation is a major influencing component in the energy transport.

Next, we explored super time-stepping schemes to accelerate the explicit scheme.

Since we do not have exact solution to estimate errors, we use the numerical solution

reported earlier from the fully explicit scheme as the reference solution. First, we im-

plemented the RKC method. Since this method has a damping parameter ν involved,

we tried several runs with different combinations of the ν and s values. The solutions

at the intermediate stages < s are not outputted since they are not guaranteed to

be stable as some of the values of τk will be greater than the ∆tExpl. Note that the

larger the damping factor ν, the shorter the ∆t becomes, improving the accuracy at

the expense of more computations.

Speedup of the RKC super time-stepping scheme of stage s as well as their errors

in L2 and L∞ norms are shown in the Table 3. The comparison is based on the explicit

code, (s = 1, ν = 0), which takes about 534 seconds for one simulation of tmax = 60s.

The errors displayed in the Table 3 show the increasing trend with the increase in

the number of stages s. The same table also shows that the RKC scheme of a fixed

stage s, the increasing values of ν reduces the error norms. The damping coefficient

ν in RKC can be used as a “tune-up” parameter, trading speedup for accuracy.

We note that the RKC scheme (3.7) can be thought as a series of updates using

forward Euler time-steps. The large value of ν that takes more computational time

can be more accurate than the explicit Euler method.

Next, we experimented the other super time-stepping scheme namely RKL. The

RKL scheme does not have the damping parameter ν and it needs some modification

in the explicit Euler code. Looking at the algorithms (3.7) and (3.15), it seems that

the RKL scheme is much more involved and it does require more function evaluations

and memory storage. The numerical simulations show that for large values of s, RKL

catches up with the speedup of the RKC scheme. The CPU timings as well as the

errors resulting from different values of s are shown in the Table 4.

To compare the performance of the two super time-stepping schemes, we need

to consider both accuracy and efficiency. RKC scheme has the advantage of having

the damping parameter ν to monitor the errors and speedup. For the similar tuning

in RKL, we introduce a parameter δ = ∆t/∆tmax and run the RKL code for several

values of δ in 0 < δ < 1 to achieve speedup with an acceptable accuracy. The

numerical results are presented in Table 5 and Figure 3.
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Table 3. Test of RKC scheme in a simulation of tmax = 60s.

s ν CPU Time (sec) L∞ - Error L2 - Error

1 0 533.67 – –

2 0.0005 267.75 9.30400E-05 1.31826E-03

4 0.0005 134.61 4.32000E-04 6.12092E-03

4 0.0010 136.09 3.91741E-04 5.55054E-03

4 0.0050 146.94 4.00748E-04 5.67809E-03

4 0.0250 197.02 3.13941E-04 4.44805E-03

4 0.0500 251.31 1.88586E-04 2.67197E-03

4 0.1000 340.66 1.41799E-04 2.00902E-03

4 0.1250 378.88 4.00134E-05 5.66958E-04

4 0.2500 533.03 1.69318E-05 2.39894E-04

10 0.0005 56.82 3.09701E-03 4.38803E-02

10 0.0010 60.19 2.70092E-03 3.82683E-02

10 0.0050 84.82 1.50698E-03 2.13519E-02

10 0.0250 169.17 4.13328E-04 5.85634E-03

10 0.0500 238.46 3.68489E-04 5.22080E-03

10 0.1000 337.14 3.02805E-04 4.29007E-03

10 0.1250 379.51 5.56838E-05 7.88971E-04

10 0.2500 533.06 1.14577E-04 1.62327E-03

20 0.0005 33.47 5.64470E-03 7.99823E-02

20 0.0010 39.64 4.43230E-03 6.28032E-02

20 0.0050 76.06 2.92501E-03 4.14427E-02

20 0.0250 168.88 3.63746E-04 5.15390E-03

20 0.0500 238.82 1.42706E-04 2.02204E-03

20 0.1000 337.77 1.44767E-04 2.05107E-03

20 0.1250 377.61 1.21551E-04 1.72214E-03

20 0.2500 534.02 1.14656E-04 1.62439E-03

25 0.0005 29.49 7.07114E-03 1.00195E-01

25 0.0010 36.66 6.14839E-03 8.71177E-02

25 0.0050 75.39 2.53974E-03 3.59845E-02

25 0.0250 168.29 3.29416E-04 4.66753E-03

25 0.0500 238.00 5.06888E-04 7.18154E-03

25 0.1000 336.58 1.44771E-04 2.05114E-03

25 0.1250 376.32 3.50528E-04 4.96616E-03

25 0.2500 532.19 2.76567E-04 3.91826E-03

25 0.5000 753.27 2.40535E-05 3.40761E-04

50 0.0050 75.75 1.54492E-03 2.18904E-02
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Table 4. Test of RKL scheme in a simulation for tmax = 60s.

s δ CPU Time (sec) L∞ - Error L2 - Error

1 1.00 533.67 – –

2 0.90 357.44 1.86496E-02 2.57524E-01

4 0.90 214.50 1.15669E-02 1.59531E-01

6 0.90 152.69 6.82398E-03 9.39144E-02

8 0.90 119.11 4.08382E-03 5.59487E-02

10 0.90 97.21 2.71804E-03 3.71062E-02

12 0.90 82.38 6.41650E-04 8.02056E-03

16 0.90 63.08 7.30341E-04 1.00551E-02

20 0.90 50.99 2.15566E-03 3.04428E-02

25 0.90 41.33 7.40035E-03 1.05113E-01

50 0.90 21.12 3.76210E-02 5.33117E-01

Table 5. Test of RKL scheme with ∆t/∆tExpl = δ( s
2+s
2

) and 0 < δ < 1.

s δ CPU Time (sec) L∞ - Error L2 - Error

1 1 533.67 – –

25 0.9000 41.30 7.40035E-03 1.05113E-01

25 0.8000 46.47 5.26300E-03 7.47614E-02

25 0.7000 53.10 3.12282E-03 4.43216E-02

25 0.6000 61.96 4.48381E-03 6.36895E-02

25 0.5000 74.34 3.50634E-03 4.98065E-02

25 0.4000 92.93 3.70110E-03 5.25590E-02

25 0.3000 123.90 1.56289E-03 2.21917E-02

25 0.2000 185.86 1.75300E-03 2.48974E-02

25 0.1000 371.71 7.79211E-04 1.10680E-02

25 0.0500 743.42 2.92405E-04 4.15314E-03

50 0.9000 21.08 3.76210E-02 5.33117E-01

50 0.4500 42.15 1.87330E-02 2.65460E-01

50 0.2250 84.32 9.28969E-03 1.31642E-01

50 0.1125 168.67 4.56815E-03 6.47344E-02

RKC is more accurate for s ≤ 15 but RKL seems to be more consistent in error

also for larger s. RKC with appropriately chosen ν always performs better than RKL

for the same s. RKC with ν = 0.0005 is found to have the best performance both in

speedup as well as accuracy.
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Figure 3. Test comparison of the two super time-stepping schemes

speedup (left) and error (right).

5. Conclusion

In this paper, we considered a nonlinear parabolic partial differential equation

modeling a coupled conduction and radiation heat transfer problem and solved it nu-

merically using explicit finite volume method with super time-stepping strategy. We

implemented two first order super time-stepping schemes (RKC and RKL) and found

that both the methods work well for the model problem and boast large efficiency

gains compared to standard explicit Euler method. Based on the numerical simula-

tions, we confirmed that the RKC performed better than the RKL in the speedup

providing we can choose the damping parameter (ν) appropriately by trial and error.

Tuning in the RKL scheme can be done by reducing the time-step size ∆t < ∆tmax.

Both the super time-stepping methods can be easily implemented and parallelized for

problems in higher dimensions and with intricate geometry.
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