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ABSTRACT. Contraflow reconfiguration allows the arc reversals that increases the outbound road

capacities. During emergency, the maximum number of evacuees should be moved from the disas-

trous areas to the safe destinations. Contraflow technique is one of the widely accepted mathematical

models for the efficient solution of evacuation planning problem. In literature, there are number of

efficient algorithms to handle this issue however, the problem is NP-hard in general.

In this paper, we briefly overview the development of contraflow technique to solve the real

life problems. The heuristic approaches with different applications will be highlighted. From the

analytical point of view, the contraflow model increases the flow value up to double and decreases

the time at most half to transship the given flow value. With contraflow reconfiguration, efficient

algorithms for maximum dynamic, the earliest arrival (transshipment) and the lex-maximum dy-

namic contraflow problems are discussed in both discrete and continuous time settings. Moreover,

the maximum dynamic contraflow and the earliest arrival contraflow problems are generalized in-

cluding an additional constraint loss or gain for each arc of the evacuation network. These problems

are illustrated on two terminal lossy network taking highest gain path from the source to he sink.

The contraflow network is replaced by an abstract contraflow network with a system of linearly or-

dered sets, called paths satisfying the switching property and solved the maximum static contraflow

problem and maximum dynamic abstract contraflow problem in continuous time setting.

Key words: Evacuation planning, contraflow, dynamic flow, transshipment problem, approx-

imation algorithm, generalized contraflow.
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1. INTRODUCTION

The research in evacuation planning is being challenging due to the increasing

number of noticed or unnoticed disasters, both natural and man-made. In spite

of various discoveries and urbanization, terrible disasters e.g. earthquakes, tsunamis,

landslides, volcanic eruptions, hurricanes, typhoons, floods, terrorist attacks, chemical

explosions, etc. are creating threats to human life. The evacuation planning problem
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is the process of shifting the maximum evacuees from the disastrous areas to the safe

destinations as quickly as possible with an optimal evacuation plan.

The evacuation network is defined as a network that corresponds to a region (or a

building) to be evacuated in which the intersections of streets (or rooms in a building)

represent the nodes and the connections between these parts (i.e., streets in region,

or doors between rooms) denote the edges. The initial locations of evacuees are the

source nodes and the locations at safety regions are the sink nodes. The nodes and

edges are bounded by capacities. Each arc has transit time or cost function. The

group of evacuees that passes through the network over time is modeled as a flow.

The plan is dependent upon the number of sources, sinks, parameters on the arcs and

nodes, like constant, time-dependent or flow dependent capacities or transit times as

well as additional constraints. The time may be discrete or continuous. We refer to

[4] for the detailed survey of evacuation network flow models.

Contraflow is a very useful model introduced in evacuation planning. It is a

problem of congestion minimization. It increases the outbound roads capacities by

reversing the direction of arcs towards the sinks from the sources. Through the

network with increased capacity, contraflow problem shifts the maximum number of

evacuees to the sinks and decreases the evacuation time as well. It seeks to remove

traffic jams and makes the traffic systematic and smooth. It is emerging to react to

different large scale natural and man-made disasters. However, it is a very challenging

issue of finding a network reconfiguration with ideal lane directions satisfying the given

constraints to optimize the given objective.

The concept of contraflow was developed to evacuate affected people in many

terrible disasters, (Wolshon et al. [41]). However, it was used depending on past

evacuation experiences without an appropriate guideline. Litman [19] criticized the

unplanned contraflow concept and highlighted its importance after hurricanes Katrina

and Rita. Hamza-Lup et al. [11] supported a smart traffic evacuation management

system by developing contraflow algorithms for the first time. However, these algo-

rithms are not effective for the fixed number of evacuees, road capacity and specific

sinks, or for the spreading evacuees over many locations. First mathematical op-

timization model and a tube search heuristic for the contraflow concept have been

investigated in [36, 37]. Kim and Shekhar [17] introduced the contraflow technique

using graph and flow theory and presented two heuristics that not only find the ideal

direction of arc reversals but also compute a local minimum of evacuation time. First

integer programming formulation for contraflow was introduced in [18] with greedy

and bottleneck heuristics that reduced the evacuation time by at least 40 percent

with at most 30 percent of the total arc reversals.

There are different implementations of contraflow technique in real life. Authors

in [42, 43] evacuated the Monticello, Minnesota region by solving the lane based
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contraflow and crossing elimination strategies simultaneously. Contraflow model and

repair of damaged roads are simultaneously solved in [38] in which more than 50%

time can be reduced for construction of one new road and 20% time can be reduced

by re-planning the reseource. Wang et al. [39] presented contraflow evacaution model

with the evacuation priorities and setup time for contraflow operation. If the root

choice opportunity for evacuees in complete contraflow network model can be pro-

vided, then 30 to 60% evacuation time can be minimized, [20]. By reversing the

shortest paths, Min & Lee [22] introduced a contraflow routing problem based on

the maximum throughput flows. To evacuate a region with low mobility population

that has little access to personal vehicles, unable to drive due to age, sickness, or any

other reason, a multi-modal integrated contraflow mdoel has been presented in [14].

The transit-based models are initiated with vehicle routine problem whereas the inte-

grated strategy contains non-contraflow to shorten the strategy setup time, full-lane

contraflow to minimize the evacuation network capacity and bus contraflow to realize

the transit cycle operation. Pyakurel et al. [32] study transit-based evacuation mod-

els and present a case study of Kathmandu metropolitan city for transit dependent

evacuees as an application. Zhao et al. [44] presented bi-level model integrating lane

based reversal design and routing with intersection crossing conflict elimination for an

efficient evacuation by minimizing the total evacuation time to leave the evacuation

zone.

In this study we mainly focus on analytical solutions of contraflow evacuation

planning problems for dynamic, generalized dynamic and abstract networks. In dy-

namic network each arc has transit time and capacity, and the problem is to find the

maximum flow from the sources to the sinks at each time period with arc reversal

capability. The parameters we considered in the constraints are constant and the

evacuation time means the evacuation egress time. Moreover, we assume that the

arcs can be reversed without any processing cost. If the arc contains additional pa-

rameter, the gain factor, then the problem will be generalized contraflow in which we

send the maximum flow to the sinks through highest gain paths with arc reversals

[24]. If the network have linearly ordered sets, i.e., paths satisfying the switching

property, the it is an abstract network. It has a set of elements and path system

instead of node and arc.

In comparison with the development of heuristic and integrated approaches for

contraflow problem, the analytical approach has not so long history. The first analyt-

ical approach for the contraflow configuration has been developed by Arulselvan [1]

and Rebennack et al. [33] to solve the maximum dynamic contraflow and the quickest

contraflow problems in discrete time on two terminal network. Recently, Pyakurel and

Dhamala [28, 29] introduced the maximum dynamic contraflow problem in continu-

ous time setting. They introduced continuous model for the problem and presented
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efficient algorithm to solve it. They used the natural transformation of Fleischer and

Tardos [7] in the algorithm of Arulselvan [1] and Rebennack et al. [33] due to which

it is converted into continuous time setting. The optimal solution for this problem

can be computed in the same complexity as in discrete time setting. Moreover, the

development of contraflow models and efficient algorithms in both discrete and con-

tinuous time settings can be found in [24, 5, 25, 26, 27]. The contraflow models and

algorithms has been generalized in [30]. The concept of dynamic contraflow has been

extended to the abstract network in [29]. We discussed these problems and algorithms

in remaining sections.

This paper is organized as follows. We present the mathematical background

that are necessary for this paper in Section 2. Section 3 gives a short summery of

existing analytical solutions for the contraflow evacuation planning problems in both

discrete and continuous time settings. Section 4 highlights the solution techniques

for the generalized contraflow evacuation planning problem. The abstract contraflow

approach is discussed in Section 5. Section 6 concludes the paper.

2. PROBLEM FORMULATIONS

An evacuation network N consists of a directed graph G = (V,A) where V

denotes a finite set of nodes and A denotes a finite set of arcs, i.e.,|V | = n and

|A| = m. Let S ⊂ V be a set of source nodes and D ⊂ V be a set of sink nodes.

As we are considering the contraflow network, any two way network configuration is

allowed. If a network has only one source and only one sink, then we represent them

as s and d, respectively. Let bA : A→ Z+, bV : V → Z+, τ : A→ Z+ and cA : A→
Z+ represent the arc capacities, node capacities, transit times and arc costs of the

network, respectively. If supply and demand at each source and sink are fixed, they

are represented by the vectors µ(s) and ν(d), respectively. The dynamic evacuation

network is represented as N = (V,A, bA, bV , τ, S,D, T ) with predetermined time T . A

finite time horizon T may be discrete or continuous within which evacuation process

must be completed. We assume that a domain of time T is valid for both discrete and

continuous time setting i.e., T = {0, 1, 2, . . . , T} in a discrete model and T = [0, T ]

in a continuous model. The group of evacuees is modeled as a flow which passes

through the network over time. Let Aoutv = {(v, w) ∈ A} and Ainv = {(w, v) ∈ A} be

the sets of outgoing arcs and incoming arcs, respectively, for the node v ∈ V . Unless

otherwise stated, we assume that there isn’t any incoming arc to source node s and

outgoing arc from sink node d, i.e., Aoutd = Ains = ∅.

Let the reversal of an arc e = (v, w) be denoted by e−1 = (w, v). For a contraflow

configuration of a given network N with symmetric transit times, the auxiliary net-

work N = (V,E, bE, τ, S,D, T ) consists of the modified arc capacities and constant
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transit times as follows

bE(e) = bA(e) + bA(e−1), and τ(e) =

{
τ(e) if e ∈ A
τ(e−1) otherwise

where, an edge e ∈ E in the auxiliary N if e ∨ e−1 ∈ A in N . The remaining graph

structure and data are unaltered.

Let the non-negative function xdyna : A×T→ R+ represents the dynamic flow. A

dynamic s− d flow xdyna for given time T satisfies the flow capacity and conservation

constraints (2.1 -2.3). The inequality flow conservation constraint (2.1) allows the

flow to wait at intermediate nodes, however, the equality constraint (2.2) forces the

flow entering an intermediate node to leave it again immediately. Ford and Fulkerson

[6] studied the maximum dynamic flow models.

t∑
σ=τ(e)

∑
e∈Ain

v

xdyna(e, σ − τ(e))−
t∑

σ=0

∑
e∈Aout

v

xdyna(e, σ) ≥ 0,∀v 6∈ {s, d}, t ∈ T(2.1)

T∑
σ=τ(e)

∑
e∈Ain

v

xdyna(e, σ − τ(e))−
T∑
σ=0

∑
e∈Aout

v

xdyna(e, σ) = 0, ∀ v 6∈ {s, d}(2.2)

0 ≤ xdyna(e, t) ≤ bA(e, t), ∀ e ∈ A, t ∈ T(2.3)

The maximum dynamic flow and the earliest arrival flow maximizes val(xdyna, T )

and val(xdyna, t) in (2.4) and (2.5) satisfying the constraints (2.1-2.3).

val(xdyna, T ) =
T∑
σ=0

∑
e∈Aout

s

xdyna(e, σ) =
T∑

σ=τ(e)

∑
e∈Ain

d

xdyna(e, σ − τ(e))(2.4)

val(xdyna, t) =
t∑

σ=0

∑
e∈Aout

s

xdyna(e, σ) =
t∑

σ=τ(e)

∑
e∈Ain

d

xdyna(e, σ − τ(e))(2.5)

If the flow is static, then we represent it as xstat : A→ R+.

The continuous flow models are similar to the discrete flow models, with the

sum over time replaced by an integral. The continuous time models would give

more accurate results with higher computational complexity. Thus, discretization of

the models are better options for good approximations to real-life solutions. The

distinction between the discrete and continuous time approaches depends on whether

the flow that entering an arc e at time t− τ(e) has already arrived at the head node

by time t or is still on the arc at that moment. In the former we assume that such a

flow is already at the head node at time t. However, in the latter it will be reached

to head node at time [t + 1). Then this continuous flow is feasible and the amount

of flow that can be sent from the source to the sink at any integer time interval
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[t, t + k), for t = 0, 1, . . . , T, k ∈ N , will be the same for both flows. This is the

natural transformation introduced in [7].

For a network N , the time expanded network N (T ) = (VT , AM ∪AH) is defined

as an expansion of the dynamic network where each node v of the static graph is

copied T times to obtain a node v(t) for each v ∈ V and each t ∈ {0, ..., T}. For each

arc e = (v, w) ∈ A, the arc from v(t) to w(t + τ(v, w)) has capacity bA(v, w), called

movement arc. For each arc e = (v, w) ∈ A, the arc from v(t) to v(t+ 1) has capacity

bV (v), called holdover arc which allows storage at the node.

3. CONTRAFLOW ALGORITHMS

3.1. Maximum dynamic contraflow. The maximum dynamic contraflow (MDCF)

problem maximizes the flow value that can be sent from the sources to the sinks in

given time horizon by reversing the direction of arcs towards the sinks. In general,

this problem is not solved yet. But in particular case of a single source and a single

sink network with arc reversal capability at time zero, Arulselvan [1] and Rebennack

et al. [33] presented a polynomial time algorithm to solve it by extending the tem-

porally repeated flow algorithm of Ford and Fulkerson [6]. Arc reversal at time zero

means when an arc is reversed, it remains reversed from time 0 to T . Their solu-

tion is in discrete time setting and the processing cost of contraflow configuration is

neglected. The network is allowed to be asymmetric with respect to the arc capaci-

ties. However, transit time of two way arcs are same between any two nodes. Their

algorithm for s-d maximum dynamic flow solution determines temporally repeated

dynamic flow in auxiliary network N which optimizes the overall dynamic flows in

it. An arc (w, v) ∈ A is reversed if and only if the flow on (v, w) is greater than

bA(v, w), or if there is a nonnegative flow along (v, w) 6∈ A. An optimal solution in

N is at most equal to the optimal solution in N and an optimal MDCF solution N
is not greater than an optimal MSCF solution in the corresponding time expanded

network N (T ). An s-d maximum static contraflow problem has been introduced as

a foundation of dynamic contraflow problem.

Theorem 3.1. [33] The s-d maximum dynamic contraflow problem can be solved in

time O(h2(n,m)+h3(n,m)), where h2(n,m) = O(n.m) and h3(n,m) = O(n2.m3. log n)

are the time required for the flow decomposition and the maximum static flow compu-

tation, respectively.

For the multi terminal networks with arc reversal capability at time zero, Kim

et al. [18] and Rebennack et al. [33] showed that the maximum dynamic contraflow

problem is NP-hard in the strong sense even with two sources and one sink or vice

versa. When we choose arcs, we have to know if an arc has been reversed or not in

every time. This memory and decision of reversing the arc now or at a later time
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makes the problem NP-complete. The proofs follow by reductions from the problems

3-SAT and PARTITION.

3.2. Lex-maximum dynamic contraflow. Depending upon the given priority or-

der, the lex-maximum dynamic contraflow (LMDCF) problem finds the maximum

dynamic flow with the contraflow approach. That is, we maximize the flow leaving

the sources and entering the sinks in that given priority order with contraflow recon-

figuration of evacuation networks for given time horizon T . After disasters, evacuees

are of different categories, for example, injured, frustrated, disabled, etc. We may

not consider the evacuees as a single group. The advantage of the LMDCF problem

is that we can shift the evacuees according to the priority ordering. For example,

we can shift the injured evacuees before the others. Moreover, some regions may be

more dangerous in comparison to another so that we have to rescue the most dan-

gerous regions first. Pyakurel and Dhamala [26] introduced the LMDCF problem in

discrete time setting by extending the lex-maximum dynamic flow solution technique

of Hoppe and Tardos [13] and presented polynomial time algorithm to solve it.

First of all, the dynamic network N is converted into auxiliary network N by

reversing the direction of arcs towards the sinks using contraflow configuration in

which the capacities of the arcs are added to obtain new capacities and the transit

times remain the same. Then algorithm of Hoppe and Tardos [13] solves the LMDF

problem polynomially on the auxiliary network N . It starts with zero flow and

calculates successive layers of minimum cost static flows in the residual network of

previous layers. Each layer adds standard chain decomposition to the previous chain.

The dynamic flow constructed by the polynomial time algorithm computed via δ

minimum cost flow (MCF) computations is feasible and is lexicographically maximal

for a given time horizon T , where δ is the number of iterations.

Theorem 3.2. [26] Lexicographically maximum dynamic contraflow solution can be

computed in O(δ ×MCF (m,n)) time, where MCF (m,n) represents the time com-

plexity O(m log n)(m + n log n)) of the minimum cost flow problem in the residual

network.

Recently, Pyakurel and Dhamala [29] introduced the lex-maximum dynamic con-

traflow problem in continuous time setting. They used the natural transformation to

transform the discrete solution into continuous. Recall that in continuous time also,

their algorithm solves the problem with same complexity as in discrete time setting.

3.3. Earliest arrival contraflow. In fact, the estimation of evacuation time for

shifting evacuees from the sources to the sinks is difficult because an efficient method

to estimate it is not known yet. So, the problem of shifting maximum number of

evacuees from the beginning of time point is important in evacuation planning. In
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the dynamic contraflow evacuation networks, such kind of problem is considered as

the earliest arrival contraflow. The main advantage of the problem is that it does

not need estimated time period in advance. In general, the efficient solution for this

problem is not developed yet. However in some particular cases, this problem has

been solved with efficient algorithms in both discrete and continuous time setting.

Dhamala and Pyakurel [5, 25] introduced the earliest arrival contraflow problem

on two terminal series parallel network for discrete time. They extended the earliest

arrival flow algorithm of Ruzika et al. [34] to the contraflow framework and presented

a polynomial time algorithm. Recall that a minimum cost circulation flow (MCCF)

solution has minimum cost if and only if the corresponding residual network does not

contain a cycle with negative cost. The main advantage on series parallel network is

that every cycle in the residual network has non-negative cycle length. This solves

the MCCF problem introduced in (Ford and Fulkerson [6]) for the MDF problem in

the auxiliary network N . The temporally repeated flow thus obtained is an optimal

solution to the s-d EACF problem as well. However, it is not true that every ear-

liest arrival contraflow on series-parallel network satisfies the temporarily repeated

property.

Theorem 3.3. [5, 25] Earliest arrival contraflow problem can be solved in time

O(nm+mlogm) on two terminal series-parallel network.

With natural transformation, Pyakurel and Dhamala [28, 29] extended the ear-

liest arrival contraflow solution in continuous time setting. They presented an algo-

rithm to solve the problem with the same time complexity as in discrete time.

In fact the earliest arrival flow problem continues the already obtained flows in

earlier steps to forthcoming flows in forward steps, the final solution may change

the direction of arcs and obeys the backward flow laws in its processing. With this

knowledge, Pyakurel and Dhamala [26] extended the earliest arrival flow model of

(Wilkinson [40] and Minieka [23]) in two terminal contraflow network with the re-

laxation of the arc reversal capability at a number of times when an earliest arrival

flow solution demands this property. They presented an algorithm to solve it how-

ever, its time complexity is pseudo-polynomial because it works on time expanded

network. Using natural transformation of Fleischer and Tardos [7], the earliest ar-

rival contraflow solution on two terminal general network has been solve with same

complexity in continuous time, (Pyakurel and Dhamala [29]).

Theorem 3.4. Earliest arrival contraflow problem can be solved in pseudo-polynomial

time complexity on two terminal general network.

Recall that there isn’t any polynomial algorithm to solve even the earliest arrival

flow problem on two-terminal general network. Thus, an approximate earliest arrival
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contraflow problem has been introduced in [29] that computes an earliest arrival

contraflow from the source s to the sink d within a factor of (1 + ε), for ε > 0 in

time T if the direction of the arcs can be reversed without any processing cost. Their

algorithm works as follows. First, the auxiliary network is obtained by reversing the

direction of arcs towards sink. Then, with natural transformation, algorithm of Hoppe

[12] is applied that computes the minimum cost flow using shortest augmenting paths

in a repeatedly rounded auxiliary network. The obtained flow is decomposed into

chains as the sequence of augmentation that gives a dynamic flow on auxiliary network

N . The number of augmentations can be bounded by a polynomial in n, logU , and

ε−1, where U = maxe∈EbE(e) is the maximum capacity on N . The algorithm starts

to compute flow by augmenting along exact shortest paths. Then for given ε, it

periodically rounds down the edge capacities according to an increasing scaling factor

∆, where ∆ is increased with ∆ = 2i during the inner loop of phase i if there are

i = 0, 1, . . . , k scaling phases. That implies all residual capacities are integer multiples

of ∆, so that subsequent augmentations obtain at least ∆ units of flow in the static

network.

Theorem 3.5. An (1 + ε)-approximate earliest arrival contraflow solution can be

computed in O(mε−1(m+ nlogn)logU) time on two terminal general network for both

discrete and continuous time settings.

3.4. Earliest Arrival Transshipment contraflow. If the supplies and demands

are known in advance, and we have to shift all the supplies within given time horizon

T then the earliest arrival contraflow problem will be the earliest arrival transship-

ment contraflow. In general, its solution is more demanding which is not found yet.

Pyakurel and Dhamala [27] introduced the problem for evacuation planning in dis-

crete time. The problem is extended into continuous time in (Pyakurel and Dhamala

[29]). However, it is solved only in particular networks. In multi-source and single

sink network, they extended the algorithm of (Baumann and Skutella [2]) and pre-

sented a polynomial time algorithm to solve the problem. Their algorithm works as

follows.

Firstly an auxiliary network is constructed according to the contraflow config-

uration. Then, the multi-source auxiliary network is converted into a single source

network, called extended auxiliary network. It is obtained by adding a super-terminal

node s0 that is connected to each source s ∈ S by uncapacitated arcs (s0, s) with zero

transit time, and that can be reached from the sink d by an uncapacitated dummy

arc (d, s0). The supplies of nodes in s ∈ S are shifted to s0. Then, a feasible dynamic

flow from the source s0 to the sink d can be obtained by computing the minimum

cost circulation flow as in [2] on extended auxiliary network. However, the individ-

ual supplies at the source nodes might be violated by the induced dynamic flow on
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auxiliary network. To overcome this difficulty, an earliest arrival flow pattern p(t)

is defined on extended auxiliary network as the maximum flow valS(xdyna, t) where

p(t) ≤ valS(xdyna, t) holds for every t ≥ 0. If p(t) = valS(xdyna, t), for all t ≥ 0, we

are done. Otherwise, it is obtained using the algorithm of Baumann and Skutella

[2] on extended auxiliary network. Thus, the continuous time solution for earliest

arrival transshipment is computed on extended auxiliary network. The obtained ear-

liest arrival pattern in continuous time model is now turned into discrete time model

using the natural transformation of Fleischer and Tardos [7] that finds the earliest

arrival transshipment on extended auxiliary network which is equal to the earliest

arrival transshipment on auxiliary network. The obtained solution is equivalent to

the earliest arrival transshipment contraflow in both discrete and continuous time

settings.

Theorem 3.6. In both discrete and continuous time setting, the multi-source earliest

arrival transshipment contraflow problem can be solved in polynomial time in the input

plus output size of the problem.

For a single source and multi-sink networks with a special case that each arc has

zero transit time, they solved the problem with efficient algorithms. In zero transit

time, arc capacities of networks restrict the quantity of flow that can be sent at any

one time with arc reversal capability. With the help of (Schmidt and Skutella [35]),

they categorized the number of networks that allow the earliest arrival transshipment

contraflow in both discrete and continuous time, [27, 29].

Theorem 3.7. For a multi-sink network, an earliest arrival transshipment contraflow

solution with zero transit time can be obtained in polynomial time complexity on each

of the following networks construction.

Type 1.: Network with single length path

Type 2.: Network with path of length two

Type 3.: Network with two paths starting in the same node but continuing dis-

jointly

Type 4.: Network with two paths of length two starting in different nodes but end

in the same node

Type 5.: Network with containing at least one path of length two

3.5. Approximate earliest arrival transshipment contraflow. Efficient solu-

tion technique for the earliest arrival transshipment contraflow problem with discrete

and continuous time model on multi-terminal network has not been found yet, [27, 24].

When it is impossible to find efficient algorithms for NP-hard problems, approxima-

tion algorithms have been developed. The aim is to find a polynomial algorithm that

probably does not find the optimal solution but finds a solution that is as good as



EVACUATION PLANNING 479

necessary. Authors in [27, 24] presented first discrete time solution algorithms for the

approximate earliest arrival transshipment contraflow problem. For the network with

arbitrary transit time, their solution is obtained in pseudo-polynomial time complex-

ity. By assuming transit time zero on each arc, the solution is computed in polynomial

time complexity. Based on the value approximate algorithms of [10, 15], they proved

that 2 is the best approximation factor for the problem, i.e., an optimal solution

is computed within 2 times the approximation solution. Recently, Pyakurel et al.

[31] presented efficient approximate algorithm for the earliest arrival transshipment

contraflow problem with continuous time setting. With natural transformation, they

solved the problem with the same complexity as in discrete time setting.

3.6. Quickest contraflow. The quickest contraflow problem transships the given

amount of integer flow value from the sources to the sinks in minimum time period.

In general, this problem is unsolved. For particular network of a single source and a

single sink, Arulselvan [1] and Rebennack et al. [33]) realized a strongly polynomial

time algorithm to solve the quickest contraflow problem. Their algorithm based on

the parametric search algorithms of (Megiddo [21], Burkard et al. [3]). Computing

s − d paths, they first obtained an upper bound on the quickest time in polynomial

time and applied a binary search repeatedly to compute maximum dynamic con-

traflow along the path until all supplies at the source are sent to the sink. They also

proved that the multi-terminal quickest contraflow problem is harder than 3-SAT and

PARTITION. For the network with given supply-demand vector and the arc reversal

are allowed back and forth at inter time points, the multi-terminal quickest transship-

ment contraflow problem is polynomially solvable as it is equivalent to the quickest

transshipment problem of Hoppe and Tardos [13]. The solution procedure is similar

to the maximum dynamic contraflow solution algorithm.

In continuous time setting, Pyakurel and Dhamala [28] introduced the quickest

contraflow model and presented a polynomial time algorithm on two-terminal net-

works for given integral flow value. Moreover, Pyakurel and Dhamala [29] presented

a polynomial time algorithm to solve the quickest transshipment contraflow problem.

In fact, the quickest transshipment contraflow in dynamic network is a feasible dy-

namic transshipment contraflow by transshipping all given flow value in minimum

time with arc reversals whenever it necessary.

4. GENERALIZED CONTRAFLOW ALGORITHMS

The generalized evacuation contraflow problem has been investigated to evacuate

the maximum number of evacuees from the sources to the sinks through highest gain

paths by reversing the direction of arcs towards the sinks, [30, 24]. Recall that the flow

is physically transformed due to unfortunate death or hold-over in arcs so that flow
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conservation may not be satisfied in generalized evacuation contraflow problem. As

the flow may not be conserved, we cannot solve the problem in arbitrary networks.

Arbitrary generalized networks allow each gain factor to be any positive number.

We refer to a network with no gain factor exceeding one as a lossy network. Lossy

network captures many natural generalized networks where flow values are only loss

or conserve when these are sent from the sources to the sinks through the networks.

On generalized evacuation planning, as there is no hope of increasing evacuees on the

arcs during rescue process, lossy network is acceptable.

4.1. Generalized Maximum Dynamic Contraflow. The generalized maximum

dynamic contraflow problem is a maximum dynamic contraflow problem in which each

arc contains capacity, transit time as well as gain factor. We consider a two terminal

lossy network and we assume each arc has the proportional gain factor i.e., λ ≡ 2c.τ for

some constant c < 0. We also assumed that, the gain per arc remains same in either

direction, i.e., the gain factor is symmetric on the generalized contraflow network.

Then the problem is to find the maximum amount of flow with highest gain that can

be sent from the source s to the sink d through the highest gain s − d paths within

the given integer time T if the direction of the arcs can be reversed at time zero.

Authors in [30, 24] presented an efficient algorithm to solve the generalized max-

imum dynamic contraflow problem. By developing the generalized contraflow recon-

figuration framework, they solved the generalized maximum dynamic flow problem

using algorithm of [9, 8] within the framework. It starts with the zero flow, com-

putes a maximum flow in the highest gain path, i.e., in the shortest path of the static

residual network, augments this flow and repeats this process until no s − d path

exists in the static residual network. Then, it uses the augmented maximum flows

to construct an optimal solution by sending each flow as long as possible through

the network similar to the temporally repeated flow technique for standard maximum

dynamic flow on the auxiliary network. The obtained flow is equal to the generalized

maximum dynamic contraflow on original network. As it works on time-expanded

network, its time complicity is pseudo-polynomial.

Theorem 4.1. The generalized maximum dynamic contraflow problem is solved in

pseudo-polynomial time complexity on two-terminal lossy network.

4.2. Generalized Earliest Arrival Contraflow. For a two terminal lossy network

with integer capacity, integer transit time and gain factor on each arc, the generalized

earliest arrival contraflow problem is to find the maximum amount of flow with highest

gain that can be sent in every time period 0 ≤ t ≤ T , from the source s to the sink d if

the arcs can be reversed at time zero. Authors in [30, 24] introduced the problem and

solved it with efficient algorithm. They proved that the algorithm developed for the

generalized maximum dynamic contraflow problem also solves the generalized earliest



EVACUATION PLANNING 481

arrival contraflow problem because the solution satisfies the earliest arrival property,

i.e., a cumulative amount of flows reaching the sink in every considered time period

and all preceding time periods of the considered one have to be maximal. Analogously,

the flows leaving the source have to be maximal. Thus, the generalized earliest

arrival contraflow problem is also solved in pseudo-polynomial time complexity. Its

polynomial solution is demanding.

5. ABSTRACT CONTRAFLOW ALGORITHMS

An abstract network contains the element set A and path sets P . Each element

a in A has capacity bA(a) : A → R+ and travel time τA(a) : A → Z+ or cost

(weight) cA(a) : A → R+. The capacity limits flow amount moving along each

element, τA measures the time needed to travel an element and cA represents the

cost needed to move one unit of flow along each element. There are paths from s-d

as well as d-s. However, the movement of flow along the paths d-s are forbidden.

Pyakurel et al. [31] introduced the abstract contraflow model, where the contraflow

has been extended to more general setting of abstract flows by replacing the underline

contraflow network with an abstract system of linearly ordered sets, called paths

satisfying the switching property. The paths P and Q cross at element a if a ∈ P ∩Q
and satisfy the switching property if there exists a path R that only uses elements at

the beginning of P and at the end of Q (and vice versa). Mathematically, both sets

{R ⊆ P | R ⊆ (P, a) ∪ (a,Q)} and {R ⊆ P | R ⊆ (Q, a) ∪ (a, P )} are non-empty. Let

the switching paths of P and Q be

P ×a Q ∈ {R ⊆ P | R ⊆ (P, a) ∪ (a,Q)} and

Q×a P ∈ {R ⊆ P | R ⊆ (Q, a) ∪ (a, P )}

where, (P, a) = {p ∈ P : p ≤P a} and (a,Q) = {q ∈ Q : a ≤Q q}, [16, 15].

Contraflow configuration with path reversal capability has been introduced in

[31]. It is to reverse the direction of empty paths to increase the flow value. Notice

that the reversal of a path is equivalent to the reversal of each element contained in

the path. However, the transit time remains same. Moreover each path with increased

capacity satisfies the switching property. In the abstract contraflow framework, au-

thors introduced the abstract maximum static and abstract maximum dynamic con-

traflow problems on two terminal abstract network and presented polynomial time

algorithms to solve them. Using maximum flow and minimum cut relation in abstract

static network, they proved that double flow can be sent from s to d if the minimum

cut capacities are symmetric. Moreover, they solved the abstract maximum dynamic

contraflow in continuous time setting with the same complexity as in without con-

traflow. This solution also exists for discrete time setting on two terminal abstract

network.
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Theorem 5.1. The abstract maximum dynamic contraflow problem can be solved in

polynomial time complexity and the flow value can be increased up to double with

contraflow reconfiguration if the dynamic minimum cut capacities are symmetric.

6. CONCLUDING REMARKS

The most crucial evacuation planning problems, that are being frequently studied

by most of the emergency planning researchers, are considered in this paper. Com-

pact surveys on the contraflow models and algorithms of the maximum dynamic,

lexicographic maximum dynamic, earliest arrival, earliest arrival transshipment and

the quickest problem are presented in depth. The contraflow approach that increases

the flow value significantly with reasonably less evacuation time are extended with

their analytical optimal solutions. These techniques are mostly accepted as heuristics

solutions earlier. Majority of the dynamic flow solution with or without contraflow are

proved to be computationally hard except for two-terminal evacuation circumstances

or special structured networks.

This work highlights the approximation algorithms on earliest arrival transship-

ment contraflow that yield near optimal solutions with efficient algorithms. The gen-

eralized contraflow approaches are the extensions of the results on solution of dynamic

flow and lossy networks. The generalized maximum and earliest arrival solutions are

studied briefly in this paper. The abstract contraflow approach has been highlighted.

The summery of results in this paper highlights many insights on the efficient solu-

tions and opens further interesting research problems in dynamic evacuation planning

problems.
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