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ABSTRACT: A new collocation method for the solution of a class of second-order

two-point boundary value problems associated with physiology and other areas with

a singular point at one endpoint is constructed. The singularity of the differential

equation is modified by L’Hôpital’s rule and the boundary condition y′(0) = 0. Quin-

tic B-spline functions on equidistant collocation points are used to approximate the

solution. The quasi-linearization technique is used to reduce a non-linear problem to

a sequence of linear problems. The system obtained on discretization is transformed

to the system of linear algebraic equations which is easy to be solved. It is proved that

the proposed algorithm converges to a smooth approximate solution of the singular

boundary value problems and the error estimates are given. To check the theory and

to demonstrate the efficiency of the proposed method, several numerical illustrations

from physical model problems have been carried out. To show the effectiveness of the

proposed method comparisons with several existing methods has also been done.
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1. INTRODUCTION

We consider the numerical solution of linear two-point boundary value problems
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(BVPs) with a singularity at one endpoint. In particular, the class of problems is

formulated as:

y′′(x) +
k

x
y′(x) + f(x)y(x) = g(x), 0 < x < 1, (1a)

subject to the boundary conditions

y′(0) = 0, py(1) + qy′(1) = β, (1b)

where k ≥ 0 and f(x), g(x) are sufficiently smooth to ensure the existence and

uniqueness of the solution of (1a)-(1b).

These singular boundary value problems (RSVPS) for ordinary differential equa-

tions frequently arise in a variety of applied mathematics, scientific, and engineer-

ing applications such as heat conduction, nuclear physics, gas dynamics, boundary

value theory, flow networks of biology, atomic calculations, chemical reaction, electro-

hydrodynamics, in the study of generalized axially symmetric potentials after sep-

aration of variables, thermal explosions, control and optimization theory and many

more. For example, the BVP

d2T

dx2
+
k

x

dT

dx
+ φ(T ) = 0,

dT

dx

∣

∣

∣

∣

x=0

= 0, T (1) = 1,

results from an analysis of heat conduction through a solid with heat generation. The

function φ(T ) represents the heat generation within the solid, T is the temperature

and the constant k is equal to 0, 1 or 2 depending on whether the solid is a plate, a

cylinder or a sphere. Another example is the Thomas-Fermi model

y′′(x) =

√

y(x)

x
, y(0) = 1, y(b) = 0,

in atomic physics that describes the charge concentration y(x) of electrons in an ion.

Such problems are also encountered in stochastic control problems when studying the

steady-state properties of systems driven by noise which is proportional to the state

or which are non-linear functions of the state. These also arise in physiology for the

study of various tumor problems, the study of steady states oxygen diffusion in a

spherical cell with michaelis-menten uptake kinetics and the study of heat sources

distribution in the human head.

Because of such a wide scope and applications, this classical problem has attracted

much attention [41, 28] and many researchers have focused on these type of problems.

These problems have been investigated intensively by using a variety of numerical

methods [36, 37, 38, 7, 26, 22, 15, 45, 11, 12, 13, 24, 44]. These methods include the

finite difference method, spline methods, finite element methods and other important

class of numerical methods that includes the Rayleigh-Ritz, Galerkin and collocation

methods [13, 3, 4, 18].



SINGULAR BOUNDARY VALUE PROBLEMS 97

Because of their simplicity and intuitive, the finite difference method is always a

good choice for solving SBVPs. In 2003, Kanth and Reddy [36] proposed a fourth or-

der finite difference method by re-approximating the central difference approximation

to solve SBVPs. Because of their simplicity and piecewise polynomial characteristics

of the spline functions, a number of methods based on splines for solving SBVPs have

been extensively studied. In 2005, Kanth and Reddy [37] studied two-point SBVPs

by applying cubic spline interpolation method and extended it to solve non-linear

SBVPs [38]. After reducing the non-linear problem into a sequence of linear problems

by using quasi-linearization techniques and then modifying the resulting sets of dif-

ferential equations around the singular point, Kanth and Bhattacharya [39] employed

B-spline functions to solve two-point BVPs with a singularity at x = 0. Based on

cubic B-spline bases, in 2006, Caglar and Caglar [7] applied a direct method to find

a solution of SBVPs.

To overcome the slow convergence of the Taylor series solution Cohen and Jones

[14] have used an economized expansion for the problems and employed deferred

correction outside the range of economized expansion. Reddien [40] has studied collo-

cation method for the numerical solution of such problems. Kadalbajoo and Raman

[25] have discussed the numerical solution of SBVPs using the invariant imbedding

method.

For a homogenous and linear SBVPs, to remove the singularity, Kadalbajoo and

Aggarwal [26] first used Chebyshev economization in the vicinity of the singular point

and then they derived boundary condition at a point in the vicinity of the singularity.

The resulting regular BVP is then efficiently treated by cubic B-spline for finding

the numerical solution. Recently, Goh et al. [22] used quartic B-spline approxima-

tions where the values of coefficients are chosen via optimization. Cui and Geng [15]

proposed a method for solving SBVPs where the exact solution is represented in the

form of a series in reproducing kernel space. But the deduction of this method seems

to be relatively complicated and not intuitive. In [1], Abukhaled et al. modified the

singularity by L’Hôpital’s rule and then the economized Chebyshev polynomial is im-

plemented in the vicinity of the singular point. The readers may also see Chawla and

Katti [10], and El-Gebeily and Abbu-Zaid [19] for extra readings. After modifying

the singularity by L’Hôpital’s rule an adaptive spline method is introduced by Khuri

and Sayfy [29].

In the present study to obtain a continuous solution with a higher order approx-

imation, a method of collocation using quintic B-spline functions is proposed for

two-point BVPs with a singularity at x = 0. The new boundary condition is derived

by using L’Hôpital’s rule in the vicinity of the singularity. Quintic B-spline functions

are then employed to solve the SBVP. The problem with a singularity at x = 1 or

with the singularities at both ends can be treated in a similar way.
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This paper is organized as follows. In Section 2, the quintic B-spline collocation

method is applied to two-point SBVPs. For non-linear SBVPs the quasi-linearization

approach is given in Section 3. The convergence of the proposed method is analyzed in

Section 4 and in Section 5, some numerical examples from the literature are presented

and the comparisons of the solutions obtained by different existing methods are made

to show the better reliability of our method. Finally, at the end, some conclusions

are given in Section 6.

2. PROPOSED METHOD

In this section, we introduce a spline collocation method for solving SBVP (1a)-(1b).

To overcome the singularity at x = 0 in the coefficient of the convection term, we

apply L’Hôpital’s rule as x approaches zero to the term y′(x)
x

in (1a). Since y′(0) = 0,

so y′(x)
x

is in indeterminate form at x = 0 and thus the use of L’Hôpital’s rule gives

limx→0
y′(x)
x

= y′′(0). Thus, we obtain the BVP

Ly(x) ≡ y′′(x) + u(x)y′(x) + v(x)y(x) = r(x), 0 < x < 1, (2a)

with the boundary conditions

y′(0) = 0, py(1) + qy′(1) = β, (2b)

where

u(x) =







0, if x = 0,

k
x
, if x 6= 0,

v(x) =







f(0)
k+1 , if x = 0,

f(x), if x 6= 0,

r(x) =







g(0)
k+1 , if x = 0,

g(x), if x 6= 0.

Let π :≡ 0 = x0 < x1 < x2 < . . . < xn−1 < xn = 1 be the partition of [0, 1], with

equidistant spacing h = 1/n.

We use quintic B-spline functions to approximate the solution y(x) of (1a)-(1b).

The quintic B-splines Bi, i = −2,−1, . . . , n+2 at the nodes xi are defined to form a

basis over the interval [0, 1] (see ref. [34]). A quintic B-spline Bi, i = −2,−1, . . . , n+2,

covers six elements and defines over the interval [0, 1] as follows:

Bi(x) =
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1

120h5















































(x− xi−3)
5, xi−3 ≤ x ≤ xi−2,

(x− xi−3)
5 − 6(x− xi−2)

5, xi−2 ≤ x ≤ xi−1,

(x− xi−3)
5 − 6(x− xi−2)

5 + 15(x− xi−1)
5, xi−1 ≤ x ≤ xi,

(xi+3 − x)5 − 6(xi+2 − x)5 + 15(xi+1 − x)5, xi ≤ x ≤ xi+1,

(xi+3 − x)5 − 6(xi+2 − x)5, xi+1 ≤ x ≤ xi+2,

(xi+3 − x)5, xi+2 ≤ x ≤ xi+3,

0, elsewhere.

(3)

The values of Bi(x), B
′
i(x), B

′′
i (x) and B′′′

i (x) at the nodal points xj obtained from

the definition are given in Table 1.

Table 1: The values of B-Splines and their derivatives at nodal points

Nodal values

xi−2 xi−1 xi xi+1 xi+2 elsewhere

Bi(x)
1

120
26
120

66
120

26
120

1
120 0

B′
i(x)

1
24h

10
24h 0 − 10

24h − 1
24h 0

B′′
i (x)

1
6h2

2
6h2 − 6

6h2

2
6h2

1
6h2 0

B′′′
i (x) 1

2h3 − 2
2h3 0 2

2h3 − 1
2h3 0

The quintic spline space is defined as follows:

S5([0, 1]) = {s(x) ∈ C
4([0, 1]) : s(x)|[xi,xi+1] ∈ P5, i = 0, 1, 2, . . . , n− 1},

where s(x)|[xi,xi+1] is the restriction of s(x) on subinterval [xi, xi+1] and P5 is set of

all quintic polynomials. Note that each s(x) ∈ S5([0, 1]) can be written as s(x) =
n+2
∑

i=−2

ciBi(x), ci ∈ R, where the functions Bi(x), i = −2,−1, . . . , n + 1, n + 2 are

linearly independent B-spline functions on [0, 1] and so they are the basis splines of

S5([0, 1]), the dimension of S5([0, 1]) is thus n+ 5 (see ref. [43]). Clearly each Bi(x)

is non-negative and is locally supported on [xi−3, xi+3]. It is also easy to observe that

Bi(xj) = Bi+1(xj+1) for all i, j = −2,−1, . . . , n + 1, n + 2 and
n+2
∑

i=−2

Bi(x) = 1, x ∈

[0, 1].

We include two artificial points on each side of the partition π and then partition π

becomes π :≡ x−2 < x−1 < x0 < x1 < x2 < . . . < xn−1 < xn < xn+1 < xn+2. We use

the quintic B-spline basis functions Bi(x) for i = 0, 1, 2, . . . , n (see ref. [34]). It is easy

to see that each Bi(x) is also a piecewise quintic with knots at π and Bi(x) ∈ S5([0, 1]).

We seek a function φ(x) ∈ S5([0, 1]) that approximates the solution of BVP (2a)-(2b),
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represented as

φ(x) =

n+2
∑

i=−2

ciBi(x), (4)

where ci are unknown real coefficients to be determined from the boundary conditions

and collocation form of the differential equation. Here we have introduced four extra

cubic B-splines B−2, B−1, Bn+1 and Bn+2 to satisfy the boundary conditions. Each

quintic B-spline covers six elements so that an element is covered by six quintic B-

splines.

At nodal points, the values of φ and its derivatives φ′, φ′′ and φ′′′ can be determined

in terms of the element parameters cj as

φ(xj) =
1

120
(cj−2 + 26cj−1 + 66cj + 26cj+1 + cj+2), (5)

φ′(xj) =
1

24h
(−cj−2 − 10cj−1 + 10cj+1 + cj+2), (6)

φ′′(xj) =
1

6h2
(cj−2 + 2cj−1 − 6cj + 2cj+1 + cj+2), (7)

φ′′′(xj) =
1

2h3
(−cj−2 + 2cj−1 − 2cj+1 + cj+2). (8)

The order of these approximations are y′(xj) = φ′(xj) + O(h6), y′′(xj) = φ′′(xj) +

O(h4) and y′′′(xj) = φ′′′(xj)+O(h4). Thus, we obtain the following set of collocation

equations

Lφ(xj) ≡ φ′′(xj) + u(xj)φ
′(xj) + v(xj)φ(xj) = r(xj), j = 0, 1, . . . , n, (9)

with boundary conditions

φ′(x0) = 0, pφ(xn) + qφ′(xn) = β. (10)

Using equations (5), (6) and (7) in equation (9), we obtain

1

6h2
(cj−2 + 2cj−1 − 6cj + 2cj+1 + cj+2) +

uj
24h

(−cj−2 − 10cj−1 + 10cj+1 + cj+2)

+
vj
120

(cj−2 + 26cj−1 + 66cj + 26cj+1 + cj+2) = rj , j = 0, 1, 2, . . . , n,

where fj stands for f(xj) etc.. On simplifying above equation, we get
(

1

6h2
− uj

24h
+

vj
120

)

cj−2 +

(

2

6h2
− 10uj

24h
+

26vj
120

)

cj−1 +

(

− 6

6h2
+

66vj
120

)

cj

+

(

2

6h2
+

10uj
24h

+
26vj
120

)

cj+1 +

(

1

6h2
+

uj
24h

+
vj
120

)

cj+2 = rj , j = 0, 1, 2, . . . , n.

(11)

Now the use of equation (6) in first boundary condition gives

−c−2 − 10c−1 + 10c1 + c2 = 0. (12)
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Similarly, the use of equations (5) and (6) in second boundary condition turns into

p

120
(cn−2+26cn−1+66cn+26cn+1+cn+2)+

q

24h
(−cn−2−10cn−1+10cn+1+cn+2) = β,

or

( p

120
− q

24h

)

cn−2 +

(

26p

120
− 10q

24h

)

cn−1 +

(

66p

120

)

cn

+

(

26p

120
+

10q

24h

)

cn+1 +
( p

120
+

q

24h

)

cn+2 = β. (13)

We still need two equations in cj ’s. On differentiating both sides, equation (1a) gives

y′′′(x) + k
xy′′(x)− y′(x)

x2
+ f(x)y′(x) + f ′(x)y(x) = g′(x). (14)

Like earlier, we again modify this equation at x = 0. As at x = 0 the factor
xy′′(x)−y′(x)

x2 is in indeterminant form so by using L’Hôpital’s rule, we have

lim
x→0

xy′′(x)− y′(x)

x2
=
y′′′(0)

2

and so at x = 0, equation (14) can be approximated as

(

1 +
k

2

)

y′′′(0) + f(0)y′(0) + f ′(0)y(0) = g′(0).

Making use of Equations (5), (8) and the first boundary condition, it becomes

(

1 + k
2

)

2h3
(−c−2 + 2c−1 − 2c1 + c2) +

f ′(0)

120
(c−2 + 26c−1 + 66c0 + 26c1 + c2) = g′(0),

or
(

− 1

2h3

(

1 +
k

2

)

+
f ′(0)

120

)

c−2 +

(

2

2h3

(

1 +
k

2

)

+
26f ′(0)

120

)

c−1

+
66f ′(0)

120
c0 +

(

− 2

2h3

(

1 +
k

2

)

+
26f ′(0)

120

)

c1

+

(

1

2h3

(

1 +
k

2

)

+
f ′(0)

120

)

c2 = g′(0). (15)

Now to get one more equation, we differentiate (2a) to obtain

y′′′ + uy′′ + u′y′ + vy′ + v′y = r′,

or

y′′′ + u(g − k

x
y′ − fy) + u′y′ + vy′ + v′y = r′,

or

y′′′ +

(

−ku
x

+ u′ + v

)

y′ + (v′ − uf)y = r′ − ug.
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The use of equation (5), (6) and (8) at x = 1 gives the following collocation equation

1

2h3
(−cn−2 + 2cn−1 − 2cn+1 + cn+2) +

α

24h
(−cn−2 − 10cn−1 + 10cn+1 + cn+2)

+
γ

120
(cn−2 + 26cn−1 + 66cn + 26cn+1 + cn+2) = θ,

where α = −ku(1)+u′(1)+ v(1), γ = v′(1)−u(1)f(1) and θ = r′(1)−u(1)g(1). The

above equation can be written as
(

− 1

2h3
− α

24h
+

γ

120

)

cn−2 +

(

2

2h3
− 10α

24h
+

26γ

120

)

cn−1 +
66γ

120
cn

+

( −2

2h3
+

10α

24h
+

26γ

120

)

cn+1 +

(

1

2h3
+

α

24h
+

γ

120

)

cn+2 = θ. (16)

Now eliminating c−2 and c−1 from equations (12), (15) and the first equation of

(11) and eliminating cn+1 and cn+2 from equations (13), (16) and the last equation

of (11), we obtain a linear system AC = B with n + 1 linear equations in n + 1

unknowns c0, c1, . . . , cn−1, cn where matrix A is a pentadiagonal matrix. It is easy to

check that for small enough step size h the matrix A is strictly diagonally dominant

and hence invertible. Thus this (n + 1) × (n + 1) linear system can be solved by

any Gauss eliminations or any iterative method. Hence, we obtain the quintic spline

approximate solution given by (4).

3. NON-LINEAR PROBLEMS

The solution of non-linear SBVPs of the form

y′′ +
k

x
y′ = g(x, y), 0 < x < 1, (17)

with the boundary conditions

y′(0) = 0, py(1) + qy′(1) = β, (18)

arising in physiology is also considered. We assume that g(x, y) is continuous, ∂g
∂y

exists, continuous and non-negative for all 0 ≤ x ≤ 1. For the case k = 2, p = β

and q = 1 the existence and uniqueness of the solution of (17)-(18) has been given

in [23]. The SBVP (17)-(18) with k = 0, 1, 2 arise in the study of various problems

[2, 5, 6].With linear g(x, y) and non-linear g(x, y) of the form g(x, y) = σy
µ+y

, σ >

0, µ > 0 and k = 2 the problem arises in the study of steady state oxygen diffusion in

a spherical cell with michaelis-menten uptake kinetics [31, 32]. A similar equation for

k = 2 arise in the study of the distribution of heat sources in the human head [20, 21].

For g(x, y) = −δe−ǫy, δ > 0, ǫ > 0 the problem has been discussed in [17] and point-

wise bounds and uniqueness results are given. To solve the non-linear problems, we
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use quasi-linearization technique. In the quasi-linearization technique, the non-linear

differential equation is solved recursively by a sequence of linear differential equations.

Using Taylor’s series expansion the non-linear function g(x, y) at (m+1)-th iteration

can be expressed as g(x, ym+1) ≈ g(x, ym) + (ym+1 − ym)
(

∂g
∂y

)

y=ym

, m = 0, 1, 2 . . .,

where ym(x) ism-th iteration solution of the equation and y0(x) is a reasonable initial

approximation for the function y(x). The main advantage of this method is that if the

procedure converges, it converges quadratically to the solution of the original problem

that means that the error in the (m+ 1)-th iteration is proportional to the square of

the error in the m-th iteration. Now at (m+ 1)-th iteration Eq. (17) can be written

as

(y′′)m+1 +
k

x
(y′)m+1 = g(x, ym) + (ym+1 − ym)

(

∂g

∂y

)

y=ym

,

or

(y′′)m+1 +
k

x
(y′)m+1 + Pm(x)ym+1 = Qm(x),

where Pm(x) = −
(

∂g
∂y

)

y=ym

and Qm(x) = g(x, ym)− ym
(

∂g
∂y

)

y=ym

. The last equa-

tion is linear in ym+1 and can be solved by the proposed method for linear problems.

The boundary conditions become (y′)m+1(0) = 0 and pym+1(1) + q(y′)m+1(1) = β.

The proposed method can also be applicable to the non-linear SBVPs of the form

y′′ +

(

a+
k

x

)

y′ = h(x, y), a > 0, 0 < x < 1, (19)

with the boundary conditions

y′(0) = 0, ξ1y(1) + ξ2y
′(1) = ρ, (20)

which arising in physiology. As above, using Taylor’s expansion at (m+1)-th iteration

equation (19) can be written as

(y′′)m+1 +

(

a+
k

x

)

(y′)m+1 +Rm(x)ym+1 = Sm(x), (21)

where Rm(x) = −
(

∂h
∂y

)

y=ym

and Sm(x) = h(x, ym)− ym
(

∂h
∂y

)

y=ym

. The boundary

conditions become (y′)m+1(0) = 0 and ξ1y
m+1(1) + ξ2(y

′)m+1(1) = ρ. As in the case

of linear SBVPs, to overcome the singularity at x = 0, an application of L’Hôpital’s

rule on the first derivative term in (21) gives

(y′′)m+1(x) + s(x)(y′)m+1(x) + t(x)ym+1(x) = w(x), 0 < x < 1, (22a)

with the boundary conditions

(y′)m+1(0) = 0, ξ1y
m+1(1) + ξ2(y

′)m+1(1) = ρ, (22b)
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where

s(x) =







a, if x = 0,

a+ k
x
, if x 6= 0,

t(x) =







Rm(0)
k+1 , if x = 0,

Rm(x), if x 6= 0,

w(x) =







Sm(0)
k+1 , if x = 0,

Sm(x), if x 6= 0.

Equation (22a) is linear in ym+1 and can be solved by the proposed method for linear

problems.

4. CONVERGENCE ANALYSIS

In this section, we shall show that the proposed collocation method described in the

previous section is fourth order convergent. To prove the convergence of our method,

we assume the following hypotheses

H1 Problem (2) with homogeneous boundary conditions has a unique solution.

H2 The boundary value problem y′′ = 0 subject to the homogeneous boundary con-

ditions is uniquely solvable.

The second hypothesis implies that there exists a Green’s function G(x, ξ) for this

problem. Let y(x) and φ(x) are the exact and the quintic spline solutions respectively

of (1a)-(1b). If we denote y′′(x) = η(x) and φ′′(x) = ψ(x), then for m = 0, 1, we have

y(m)(x) =

∫ 1

0

∂mG(x, ξ)

∂xm
η(ξ) dξ, φ(m)(x) =

∫ 1

0

∂mG(x, ξ)

∂xm
ψ(ξ) dξ.

Now, we define the operator K : C[0, 1] → C[0, 1] such that

K[g(x)] = u(x)

∫ 1

0

∂G(x, ξ)

∂x
g(ξ) dξ + v(x)

∫ 1

0

G(x, ξ)g(ξ) dξ − r(x).

The following Lemma [34] will be used to show the convergence of the proposed

method.

Lemma 4.1. Let Png be the piecewise Lagrange’s polynomial of degree d on each of

the intervals [xjκ, x(j+1)κ], 0 ≤ j ≤ l − 1, where ld = n, interpolating g at knots of

the partition 0 = x0 < x1 < . . . < xld = 1. Then the Tchebycheff error estimates for

Lagrange’s interpolates is given by

‖g − Png‖ ≤ ‖g(d+1)‖
2(d+ 1)

hd+1.
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Theorem 4.1. Let φ(x) be the collocation approximation from S5([0, 1]) to the

solution y(x) of the boundary value problem (2a)-(2b). If y ∈ C
6[0, 1], then the error

estimate is given by

‖y − φ‖ = max
i=0,1,...,n

|y(xi)− φ(xi) |≤ Ch4,

where C is a positive constant independent of h.

Proof. To estimate the error |y(x)−φ(x) |, let φ(x) be the unique spline interpolant
from S5([0, 1]) to the solution y(x) of boundary value problem (2a)-(2b) given by (4)

between the knots 0 = x0 < x1 < . . . < x3κ = 1. Then we have

Lφ(xj) = r(xj), j = 0, 1, . . . , n,

iff Tn(x) = φ′′(x) is the solution of integral equation

Tn + PnKTn = Pnr, (23)

where Pn is an operator that maps S3([0, 1]) onto the cubic splines with the knots xi

and thus Pnw is the unique piecewise Lagrange polynomial of degree three on each

of the intervals [x3j , x3(j+1)], j = 0, 1, . . . , κ − 1 interpolating w at the knots of the

partition π.

Let T = y′′, where y is a true solution of (2a)-(2b), then T solves the integral

equation

T +KT = r.

On applying Pn and then adding T , we obtain

T + PnKT = Pnr + (T − PnT ). (24)

On subtracting (23) from (24), we get

T − Tn = (I + PnK)−1(T − PnT ). (25)

Now let G(x, ξ) be the Green’s function associated with (2a)-(2b). Then y = GT and

φ = GTn. Apply G on both sides of (25), to obtain G(T −Tn) = G((I +PnK)−1(T −
PnT )) or y − φ = G((I + PnK)−1(y′′ − Pny

′′)). The L∞ norm on both sides gives

‖y − φ‖ ≤ ‖G‖‖(I + PnK)−1‖‖y′′ − Pny
′′‖. (26)

From the hypotheses H1 and H2, we have that (I + K)−1 exists and is a bounded

linear operator. So using that PNK → K, we conclude that (I + PNK)−1 exists and

it is bounded, therefore there exists M > 0 such that ‖(I +PnK)−1‖ ≤M, ∀ n ≥ n0

for some n0. Also if y ∈ C
6[0, 1], then use of Lemma 4.1 in (26) gives

‖y − φ‖ ≤ Ch4,

where C =M‖G‖‖y4‖
8 is a constant independent of h.
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5. NUMERICAL EXPERIMENTS

In this section, the proposed method is implemented on linear as well as non-linear

SBVPs. To demonstrate the effectiveness of this novel method several test examples

have been carried out. Comparisons with exact solutions and existing numerical

methods have also been done. The discrete L∞-norm and L2-norm are defined as

follows

‖ỹ − y‖ = max
i=0,1,...,n

|ỹ(xi)− y(xi)|, ‖ỹ − y‖2 =

√

√

√

√

n
∑

i=0

(ỹ(xi)− y(xi))2,

where ỹ(xi) and y(xi) denote the numerical and analytic solutions respectively at the

knots xi.

Example 1. We take k = 1, f(x) = 1, g(x) = 0, p = 1, q = −1, β = 1 + J1(1)
J0(1)

in

model problem (1a)-(1b). The associated equation is well known Bessel’s equation of

order zero. The analytic solution of this SBVP is given by y(x) = J0(x)
J0(1)

.

To examine the error of the approximation, let En = max
i=0,1,...,n

|ỹ(xi) − y(xi)|.
It is known that, if p is the order of convergence of the method, then for large n,

En ≤ Cn−p where C is the error constant. Following the generalized algorithm for

the order verification of numerical methods given in [42], we can find C and p from

the line y = px+ logC that best fits the equation logEn = logC − p log n. Applying

this algorithm to Example 1, the equation of the best fit line whose graph is shown in

Figure 1 is y = 4.0007x−3.8018, where x = − log n and y = logEn. Thus, we conclude

that the order of convergence p ≈ 4 with error constant C = 10−3.8018 ≈ 1.5782×10−4.

Table 2: Comparison of error norms for Example 1 for different values of n

Quartic B-spline [22] Proposed method

n L∞-norm L2-norm L∞-norm L2-norm

10 1.67E-06 1.89E-06 1.49E-08 3.04E-08

20 2.04E-07 2.34E-07 9.85E-10 2.81E-09

50 1.42E-08 1.62E-08 2.58E-11 1.16E-10

100 1.44E-09 1.64E-09 1.39E-12 8.80E-12

We have used n = 32 to plot the graph between analytic and approximate solutions

for Example 1 and the graph is presented in Figure 2. For Example 1, the maximum

absolute errors in maximum norm (L∞-norm) and Euclidean norm (L2-norm) for

different values of n are tabulated in Table 2 and compared with the results obtained
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Figure 1: The best fit line for the order of convergence for Example 1
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Figure 2: Analytic and approximate solutions for Example 1
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Table 3: Comparison of numerical results for Example 1

n Method in [9] Proposed method

10 1.48E-02 1.49E-08

20 4.50E-03 9.85E-10

40 1.30E-03 6.32E-11

60 6.38E-04 1.27E-11

120 1.81E-04 2.30E-12

520 1.21E-05 1.84E-11

by Goh et al. [22]. The maximum absolute errors for different values of n are also

compared in Table 3 with those given by Caglar et al. [9].

Example 2. We take k = 2, f(x) = −4, g(x) = −2, p = 1/11, q = 1/10, β = coth 2

in model problem (1a)-(1b).

This problem has earlier been discussed by Russell and Shampine [41], which has

the analytic solution

y(x) =
1

2
+

5 sinh 2x

x sinh 2
.

The numerical results of the proposed method for n = 20 at different nodal points are

compared with those given in [38] and [45] and are presented in Table 4. As is evident

from the table, our method is of high precision, and the results obtained by using

our method are much better than those of [38] and [45]. For n = 20, a comparison

of absolute errors of first and second order derivatives with those given in [47] at

different nodal points are given in Table 5.

In Table 6, a comparison between the maximum absolute errors obtained by our

proposed method and obtained by a finite difference approach and Patch bases sug-

gested by Russell and Shampine [41] and obtained by optimal grid suggested by

Kadalbajoo and Aggarwal [27] is given. In Tables 6 and 8 the entry * shows that the

authors have not given the associated maximum absolute error. The graph between

analytic and approximate solutions for Example 2 is presented in Figure 3 by taking

n = 32.

Example 3. We take k = 1, f(x) = 1, g(x) = 4− 9x+ x2 − x3, p = 1, q = −1, β = 1

in model problem (1a)-(1b). The analytic solution of this SBVP is given by y(x) =

x2 − x3.

The relative error at nodal point xi is defined as Er = |ỹ(xi)−y(xi)|
|y(xi)|

. For Example

3, a comparison between the relative errors obtained by using the Fourier sine series



SINGULAR BOUNDARY VALUE PROBLEMS 109

Table 4: Comparison of numerical results for Example 2 at different nodal

points

x Cubic spline [38] Series solution [45] Proposed method

0.05 2.92E-04 4.54E-05 2.54E-07

0.10 2.92E-04 5.92E-05 2.78E-07

0.20 2.88E-04 6.27E-05 4.08E-08

0.30 2.82E-04 6.50E-05 1.67E-08

0.40 2.71E-04 6.61E-05 3.88E-08

0.50 2.55E-04 6.35E-05 5.05E-08

0.60 2.33E-04 5.27E-05 5.73E-08

0.70 2.00E-04 2.64E-05 6.10E-08

0.80 1.55E-04 2.62E-05 6.23E-08

0.90 1.02E-04 1.21E-05 6.13E-08
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6
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Figure 3: Analytic and approximate solutions for Example 2

[46] and obtained by our proposed method is given in Table 7. The graph between

analytic and approximate solutions for Example 3 is presented in Figure 4 by taking

n = 32.
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Table 5: Comparison of absolute errors of first-order/second-order derivatives

for Example 2 at different nodal points

Absolute errors in first derivative Absolute errors in second derivative

x Method in [47] Proposed method Method in [47] Proposed method

0.10 4.21E-06 5.85E-07 8.58E-05 1.17E-05

0.30 3.89E-07 1.79E-08 3.01E-06 1.15E-07

0.50 5.96E-08 5.46E-09 4.48E-07 9.22E-09

0.70 5.58E-08 1.56E-09 4.63E-08 1.08E-08

0.90 1.37E-07 1.42E-09 2.66E-07 1.85E-08

Table 6: Comparison of numerical results for Example 2

n FDM [41] Patch bases [41] Optimal grid [27] Proposed method

4 2.12E-01 2.02E-01 2.12E-02 4.32E-05

9 5.05E-02 4.09E-02 4.19E-03 1.53E-06

16 1.80E-02 1.30E-02 1.33E-03 4.86E-07

25 8.02E-03 5.33E-03 5.44E-04 1.55E-07

36 4.13E-03 2.57E-03 * 5.68E-08

64 1.43E-03 8.14E-04 8.25E-05 1.10E-08

Example 4. Now we take k = 1, g(x, y) = − exp(y), p = 1, q = −1, β = 4c
c+1 , where

c = 3 + 2
√
2 in non-linear model problem (17)-(18). The analytic solution of this

SBVP is given by y(x) = 2 ln c+1
cx2+1 .

This non-linear problem has earlier been discussed by many researchers like Russell

and Shampine [41], kadalbajoo and Agarwal [27], Çağlar et al. [8]. The numerical

results are obtained by reducing it into a linear problem by using quasi-linearization

technique. To linearize the problem the initial approximation satisfying both the

boundary conditions is taken as y0(x) = − 4cx2

c+1 and five iterations are used. The

numerical results of the proposed method for different values of n compared with

those given in [8] and [30] are presented in Table 8. As is evident from the table,

our method is of high precision, and the results obtained by using our method are

better than that of [8] and [30]. The graphs for first two iterations and the analytic

solution are drawn in Figure 5. The graphs show that how good the proposed method

approximates the solution just in two iterations.
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Table 7: Comparison of relative errors at different values of x for the Example

3

Taking n = 40 Taking n = 160

x Method in [46] Proposed method Method in [46] Proposed method

0.2 0.83E-02 0.77E-04 0.52E-03 0.12E-05

0.4 0.26E-02 0.27E-05 0.16E-03 0.42E-07

0.6 0.16E-02 0.72E-05 0.10E-03 0.11E-06

0.8 0.16E-02 0.15E-04 0.11E-03 0.24E-06
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Figure 4: Analytic and approximate solutions for Example 3

Example 5. Now, we consider the non-linear model problem of oxygen diffusion

with σ = 0.76129, µ = 0.03119, p = β = 5 and q = 1.

Since the analytic solution for this problem is not available so the maximum ab-

solute errors are obtained by using double mesh principle [16] and the error is defined

by

En = max
i=0,1,...,n

|yni − y2n2i |,

where yni and y2ni are the solutions obtained my taking n and 2n mesh points respec-

tively. The maximum absolute errors in numerical solution and its derivatives are
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Figure 5: Analytic and approximate solutions (first two iterations) for Ex-

ample 4

presented in Table 9. The numerical solution obtained by taking n = 20 is drawn in

Figure 6.

Example 6. Finally, we consider the following non-linear SBVP:

y′′(x) +

(

1 +
k

x

)

y′(x) =
5x3(5x5 exp(y)− x− k − 4)

x5 + 4
, 0 < x < 1,

with the boundary conditions

y′(0) = 0, y(1) + 5y′(1) = ln

(

1

5

)

− 5.

The analytic solution of this non-linear SBVP is given by y(x) = ln
(

1
x5+4

)

.

The maximum absolute errors of Example 6 are tabulated in Tables 10 for different

values of n and k. Our results are compared with those obtained by non-polynomial

cubic spline functions given in [33] and obtained by finite difference method given in

[35]. As is evident from the table 10, our method is of high precision, and the results

obtained by using our method are better than that of [33] and [35].

The graphs for first two iterations and the analytic solution are drawn in Figure

7. The graphs show that how good the proposed method approximates the solution

just in two iterations.
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Table 8: Comparison of numerical results for Example 4

n Method in [8] Proposed method n Method in [30] Proposed method

20 3.16E-05 9.12E-06 8 2.0E-04 1.3E-04

40 7.87E-06 1.20E-06 16 5.0E-05 1.7E-05

60 3.50E-06 3.68E-07 32 1.2E-05 2.3E-06

90 1.55E-06 1.12E-07 64 3.1E-06 3.0E-07

111 1.04E-06 6.07E-08 128 7.8E-07 4.0E-08

161 4.91E-07 2.04E-08 256 * 5.2E-09

Table 9: Maximum absolute errors for Example 5

n En Errors in first derivative Errors in second derivative

2 5.74E-04 1.69E-03 6.77E-03

4 6.05E-05 4.35E-04 3.48E-03

8 7.17E-06 1.09E-04 1.74E-03

16 8.77E-07 2.72E-05 8.69E-04

32 1.08E-07 6.79E-06 4.35E-04

64 1.35E-08 1.70E-06 2.17E-04

128 1.68E-09 4.24E-07 1.09E-04

256 2.07E-10 1.06E-07 5.43E-05

512 1.83E-11 2.65E-08 2.71E-05

6. CONCLUSION

Quintic B-spline functions are used to solve a class of SBVPs arising in physiology

and other areas. To handle the problem at the singularity L’Hôpital’s rule has been

used. After removing the singularity, a quintic B-spline collocation method is used

to approximate the solution over the interval [0, 1]. The advantage of the proposed

method is that the solution can be estimated within the boundary interval (recall

that the finite difference approach approximates the solution at the nodal points

only). Another advantage of the proposed method over finite difference method is

that it provides not only the approximate solution but also the derivatives of the

solution within the given interval. Convergence analysis of the proposed method

is discussed and the method is shown to be fourth-order convergent. The method

applied to several linear as well as non-linear test problems and the absolute errors in

the solution obtained by our method are compared with the several existing methods.
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Figure 6: Approximate solution for Example 5
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Table 10: Maximum absolute errors for Example 5

k ↓ n→ 16 32 64 128 256

Method in [33] 1.17E-03 3.04E-04 7.67E-05 1.92E-05 4.81E-06

0.25 Method in [35] 2.47E-06 2.04E-06 3.09E-07 3.06E-07 3.03E-08

Proposed Method 3.61E-06 2.27E-07 1.42E-08 8.93E-10 6.39E-11

Method in [33] 1.37E-03 3.46E-04 8.69E-05 2.17E-05 5.44E-06

0.75 Method in [35] 1.27E-06 1.15E-06 1.56E-07 1.16E-07 1.65E-08

Proposed Method 2.21E-06 1.41E-07 8.87E-09 5.57E-10 4.54E-11

Method in [33] 1.46E-03 3.68E-04 9.20E-05 2.30E-05 5.75E-06

1.00 Method in [35] 4.66E-05 4.95E-06 4.92E-07 4.87E-07 4.84E-08

Proposed Method 1.62E-06 1.05E-07 6.64E-09 4.17E-10 3.60E-11

Method in [33] 1.82E-03 4.52E-04 1.13E-04 2.80E-05 7.00E-06

2.00 Method in [35] 7.46E-05 7.06E-06 6.85E-06 6.75E-07 6.71E-08

Proposed Method 8.13E-07 4.25E-08 2.52E-09 1.54E-10 5.40E-12

Comparisons show that the errors obtained by our method are considerable accurate

as compared to the existing numerical methods.
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