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ABSTRACT: To interpolate the data, a new C1 rational fractal interpolation func-

tion (FIF) is proposed with the help of rational cubic spline which contains two

families of shape parameters. The uniform error bound between the rational FIF and

the original function which belongs to C3 is derived. The data dependent conditions

on the scaling factors and on one family of the shape parameters are derived so that

the constructed FIF preserves the shape features which inherited in the data.
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1. INTRODUCTION

Fractal interpolation function was introduced by Barnsley [1, 2] and it is constructed

using the iteration of a finite set of contraction mappings which is called iterated

function system (IFS). It generalizes the classical interpolation methods, namely

polynomial interpolation and spline interpolation etc. Barnsley and Harrington [3]

constructed a smooth fractal interpolation functions to approximate the unknown

function. Later many authors introduced various forms of the fractal interpolation

functions [5, 6, 18].
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Apart from interpolating the data, sometimes it is necessary to preserve the prop-

erties or the shapes (positivity, monotonicity, convexity etc) which inherited in the

data. In classical interpolation, many interpolation schemes [13, 14, 15, 20, 19, 16]

were developed to preserve the shapes of the data. In case of fractal interpolation

functions, Chand et al. [8, 10, 23, 12, 21, 11, 9, 22, 7] developed various interpolation

schemes preserving the shapes of the data. In this paper, using rational cubic spline,

a new fractal interpolation scheme that preserves the shape of the data is developed.

This rational spline contains cubic polynomial in the numerator and quadratic poly-

nomial with two shape parameters in the denominator.

The rest of the article is organized in the following way: A brief introduction

about fractal interpolation function is given in Section 2. FIF with two shape pa-

rameters is constructed in Section 3 to interpolate the data that obtained from an

unknown function. Section 4 deals with the uniform error bound between an original

function and the FIF. Shape preserving aspects (positivity, monotonicity, convexity,

constrained) of constructed fractal interpolation function are explored explicitly in

Section 5. Numerical examples are provided in Section 6 to validate the theoretical

results that are obtained in Section 5.

2. FRACTAL INTERPOLATION FUNCTION

Let a set of data points {(xi, fi) : i = 1, 2, . . . , N} be given such that x1 < x2 < · · · <
xN , I = [x1, xN ] and Ii = [xi, xi+1]. Let Li : I → Ii be a contraction homeomorphism

such that

Li(x1) = xi, Li(xN ) = xi+1.

for i ∈ J := {1, 2, . . . , N − 1}. Let K = I ×D, where D is the compact set containing

all fi’s. Consider the mappings such that for all i ∈ J , Fi : K → D satisfying











Fi(x1, f1) = fi, Fi(xN , fN) = fi+1,

|Fi(x, f)− Fi(x, f
′)| ≤ |λi||f − f ′|, x ∈ I; f, f ′ ∈ D,

(2.1)

where −1 < λi < 1. For each i ∈ J , define the function wi : K → K by wi(x, f) =

(Li(x), Fi(x, f)) for all (x, f) ∈ K. The collection J = {K;wi : i ∈ J} is called an

IFS.

Proposition 2.1. [2] The IFS {K;wi : i ∈ J} has a unique attractor G and G is the

graph of a continuous function f∗ : I → R such that f∗(xi) = fi, for i = 1, 2, . . . , N .

The above function f∗ is called a FIF corresponding to the IFS J and it can also

be constructed as follows:
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Let G = {g∗ : I → R| g∗ is continuous, g∗(x1) = f1 and g∗(xN ) = fN}. Then G is a

complete metric space with respect to the uniform metric ρ(g∗1 , g
∗

2) = max{|g∗1(x) −
g∗2(x)| : x ∈ I}. Define the Read-Bajraktarević operator T on (G, ρ) as

Tg∗(Li(x)) = Fi(x, g
∗(x)), x ∈ I, i ∈ J. (2.2)

It can be seen that T is a contraction map on (G, ρ). Therefore, by the Banach fixed-

point theorem, T has a unique fixed-point f∗(say) on G. By (2.2), the FIF f∗ satisfies

the functional equation

f∗(Li(x)) = Fi(x, f
∗(x)), x ∈ I, i ∈ J.

The FIFs constructed so far are mainly based on the IFS {K;wi : i ∈ J} with











Li(x) = aix+ bi,

Fi(x, f) = λif + ri(x),

i ∈ J,

where

ai =
xi+1 − xi

xN − x1
, bi =

xNxi − x1xi+1

xN − x1
,

|λi| < 1 and ri : I → R is a suitable continuous function such that the function

Fi satisfy (2.1) for each i. The real number λi is called the scaling factor of the

transformation wi and λ = (λ1, λ2, . . . , λN−1) is called the scale vector of the IFS.

The parameter λi plays a crucial role in determining the shape and smoothness of

the interpolant. The following proposition is established by Chand et al. to construct

C1-rational FIFs [9].

Proposition 2.2. Let {(xi, fi) : i = 1, 2, . . . , N} be a given data set such that

x1 < x2 < · · · < xN . Let di be the derivative value at the knot xi. Consider the IFS

J ∗={K; wi(x, f) = (Li(x), Fi(x, f)), i = 1, 2, . . . , N − 1}, where Li(x) = aix + bi,

Fi(x, f) = sif + ri(x), ri(x) = pi(x)/qi(x) contains four real parameters, pi(x) is

cubic polynomial, qi(x) is quadratic polynomial, qi(x) 6= 0 for all x ∈ [x1, xN ] and

|λi| < ai for all i = 1, 2, . . . , N − 1. Let Fi,1(x, f) = (λif + r
(1)
i (x))/ai, where r

(1)
i (x)

represents the derivative of ri(x). If for i = 1, 2, . . . , N − 1,

Fi(x1, f1) = fi, Fi(xN , fN ) = fi+1, Fi,1(x1, d1) = di, Fi,1(xN , dN ) = di+1,

then the attractor of the IFS J ∗ is the graph of a C1-rational cubic spline FIF.
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3. CONSTRUCTION OF FIF

In this section, a new rational FIF is constructed based on the rational cubic function.

Let {(xi, fi) : i = 1, 2, . . . , N} be a data set such that x1 < x2 < · · · < xN . Let di be

the derivative value at the knot xi. Consider the Proposition 2.2, with

ri(x) =
pi(x)

qi(x)
≡ Pi(ζ)

Qi(ζ)
=

A1,i(1− ζ)3 +A2,iζ(1− ζ)2 +A3,iζ
2(1− ζ) +A4,iζ

3

ui + viζ(1 − ζ)
,

ζ = (x− x1)/(xN − x1), x ∈ [x1, xN ]. Here ui and vi are the shape parameters. It is

assumed that ui > 0 and vi > 0 to avoid singularity in the denominator. Then the

rational FIF satisfies the functional equation

Φ(Li(x)) = Fi(x, Φ(x)) = λiΦ(x) + ri(x), x ∈ I, i ∈ J. (3.1)

The derivative Φ(1) satisfies the following functional equation

Φ(1)(Li(x)) = Fi,1(x, Φ
(1)(x)) =

λiΦ
(1)(x) + r

(1)
i (x)

ai
, x ∈ I, i ∈ J. (3.2)

The constants A1,i, A2,i, A3,i and A4,i are evaluated based on the interpolation

conditions Φ(xi) = fi, Φ(xi+1) = fi+1, Φ
(1)(xi) = di and Φ(1)(xi+1) = di+1 (these

conditions are equivalent to Fi(x1, f1) = fi, Fi(xN , fN) = fi+1, Fi,1(x1, d1)=di and

Fi,1(xN , dN )=di+1). Let hi = xi+1 − xi.

Put x = x1 in (3.1) to get

A1,i = ui[fi − λif1].

Put x = xN in (3.1) to obtain

A4,i = ui[fi+1 − λifN ].

Substituting x = x1 in (3.2), we have

A2,i = (3ui + vi)fi + uihidi − λi[(3ui + vi)f1 + ui(xN − x1)d1].

Similarly, substituting x = xN in (3.2), we obtain

A3,i = (3ui + vi)fi+1 − uihidi+1 − λi[(3ui + vi)fN − ui(xN − x1)dN ].

Thus, the rational FIF Φ is given by

Φ(Li(x)) = λiΦ(x) +
Pi(ζ)

Qi(ζ)
, (3.3)

where

Pi(ζ) = (ui[fi − λif1])(1− ζ)3 + (ui[fi+1 − λifN ])ζ3

+ ((3ui + vi)fi + uihidi − λi[(3ui + vi)f1 + ui(xN − x1)d1])ζ(1 − ζ)2

+ ((3ui + vi)fi+1 − uihidi+1 − λi[(3ui + vi)fN − ui(xN − x1)dN ])ζ2(1 − ζ)

Qi(ζ) = ui + viζ(1 − ζ), ζ = (x − x1)/(xN − x1), x ∈ [x1, xN ].

(3.4)
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Remark 3.1. The FIF (3.3) is the graph of the attractor of the following IFS:

{K;wi(x, f) = (Li(x), Fi(x, f)), i = 1, 2, . . . , N − 1}

with

Li(x) = aix+ bi, Fi(x, f) = λif +
Pi(ζ)

Qi(ζ)
, (3.5)

where ai, bi, Pi(ζ) and Qi(ζ) are given as in (3.4).

Remark 3.2. If λi = 0 for all i ∈ J , then the rational FIF given in (3.3) reduces to

the classical rational interpolant C as

C(x) =
Ui(η)

Vi(η)
, (3.6)

where

Ui(η) = uifi(1− η)3 + [uihidi + fi(3ui + vi)]η(1 − η)2

+ [−uihidi+1 + fi+1(3ui + vi)]η
2(1− η) + uifi+1η

3,

Vi(η) = ui + viη(1− η), η =
x− xi

xi+1 − xi

, x ∈ [xi, xi+1].

Remark 3.3. If λi = 0, ui = 1 and vi = 0 then the FIF (3.3) reduces to the

standard cubic Hermite spline.

In many situations, the derivative values di, i = 1, 2, . . . , N are not given. In

such situations, the derivative values are computed by using some approximation

methods. In this paper, the arithmetic mean method given in [9] is used to compute

the derivative values based on the given data. These derivative values are used to

construct C1 rational shape preserving cubic FIF.

Let ∆i = (fi+1−fi)/hi, i ∈ J. Let D∗

1 = ∆1+
(∆1 −∆2)h1

h1 + h2
, D∗

i =
hi∆i−1 + hi−1∆i

hi−1 + hi

,

i = 2, 3, . . . , N − 1, D∗

N = ∆N−1 +
(∆N−1 −∆N−2)hN−1

hN−1 + hN−2
.

At interior knots xi, i = 2, 3, . . . , N − 1, set

di =







0 if ∆i−1 = 0 or ∆i = 0,

D∗

i otherwise, i = 2, 3, . . . , N − 1.

At end knots x1 and xN , set

d1 =







0 if ∆1 = 0 or sgn(D∗

1) 6= sgn(∆1),

D∗

1 otherwise,
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dN =







0 if ∆N−1 = 0 or sgn(D∗

N ) 6= sgn(∆N−1),

D∗

N otherwise.

Remark 3.4. Using the scaling factor λi, shape parameters ui and vi, shape of the

curve can be modified according to the user. In particular, the scaling factor λi and

the shape parameter vi are playing vital role on visualizing shape of the data while

ui can take any positive value. When λi → 0 and vi → ∞, the FIF (3.3) converges

to a straight line in [xi, xi+1]. To see this, rewrite the FIF (3.3) in the following form

Φ(Li(x)) = λiΦ(x) +
{[

(1− ζ)fi + ζfi+1 +
R1i(ζ)

Qi(ζ)

]

−λi

[

(1− ζ)f1 + ζfN +
R2i(ζ)

Qi(ζ)

]}

,

where

R1i(ζ) =uihiζ(1 − ζ)[(∆i − di+1)ζ + (di −∆i)(1 − ζ)],

R2i(ζ) =uiζ(1 − ζ)[{(fN − f1)− (xN − x1)dN}ζ

+ {(xN − x1)d1 − (fN − f1)}(1− ζ)].

If vi → ∞, then Φ converges to the following affine FIF

Φ(Li(x)) = λiΦ(x) + (fi − λif1)(1− ζ) + (fi+1 − λifN)ζ.

Also, if vi → ∞ and λi → 0, then Φ converges to the straight line segment in the

interval [xi, xi+1], i.e.,

Φ(Li(x)) = fi(1 − ζ) + fi+1ζ.

Example 3.5. Consider the interpolation data { (0, 0.5), (2.5, 1.61), (3, 7.3891),

(6, 9.8696), (11, 22.18), (15, 27.3), (20, 35.2) } as used in [8]. The derivative values

are approximated using arithmetic mean method and given by d1 = 0, d2 = 9.7058,

d3 = 10.0251, d4 = 1.4401, d5 = 1.8054, d6 = 1.4133 and d7 = 1.7467. Using

arbitrary scaling factors and shape parameters, the rational cubic FIF is generated

which is shown in Figure 1(a). Classical rational cubic spline is constructed by taking

all the scaling factors λi = 0, i = 1, 2, . . . , 6 which is shown in Figure 1(b). When

vi → ∞, the rational cubic FIF becomes affine FIF which is shown in Figure 1(c).

When λi → 0 and vi → ∞, the FIF becomes a straight line in each interval which is

shown in Figure 1(d). The parameters that are used to generate Figure 1 is given in

Table 1.

4. CONVERGENCE ANALYSIS

Assume that the data {(xi, fi, di) : i = 1, 2, . . . , N} is generated from the function S

which belongs to C3. In this section, the error bound between the original function
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(b) Classical rational cubic spline.
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(c) Behaviour of FIF when vi → ∞.

0 5 10 15 20
0

10

20

30

40

x

Φ
(x

)

(d) Behaviour of FIF when λi → 0 and vi → ∞.

Figure 1: Rational cubic FIF with two parameter family.

Table 1: Parameters for FIFs given in Figure 1 with ui = 1.5 for i =

1, 2, . . . , 6.

Figure λ1 λ2 λ3 λ4 λ5 λ6 v1 v2 v3 v4 v5 v6

1(a) 0.1 0.12 0.2 0.28 0.24 0.13 10 9.2 3.8 5 8 3.9

1(b) 0 0 0 0 0 0 10 9.2 3.8 5 8 3.9

1(c) 0.1 0.12 0.2 0.28 0.24 0.13 90 102 98 114 128 104

1(d) 0.001 0.0013 0.003 0.0023 0.0043 0.003 90 102 98 114 128 104

S and the corresponding FIF defined in (3.3) is derived. This error bound will be

estimated with the help of the corresponding classical rational cubic spline.

Theorem 4.1. Let Φ be a rational cubic FIF given in (3.3) and C be a classical ra-

tional cubic spline given in (3.6) with respect to the data {(xi, fi, di) : i = 1, 2, . . . , N}
which generated from an original function S ∈ C3[x1, xN ]. Then

‖S − Φ‖∞ ≤ 1

(1− |λ|∞)

[

|λ|∞
(

[M +
h

4
M ] + [M∗ +

|I|
4
M∗]

)]

+ ‖S(3)‖∞h3c∗,

where M = max{|fi| : i = 1, 2, . . . , N}, M = max{|di| : i = 1, 2, . . . , N}, M∗ =

max{|f1|, |fN |}, M∗ = max{|d1|, |dN |}, |I| = xN − x1, h = max{hi : i ∈ J}, |λ|∞ =
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max{|λi| : i ∈ J},

σ1(ui, vi, η) =− η3

3
+

(1− η)3η2{(vi + η(ui − vi)}
3Vi(η)

+
8u2

i (1− η)3η2

3Vi(η)[(2ui + vi)(1 − η) + ui]2
,

σ2(ui, vi, η) =− η3

3
+

η2{(3ui + vi)− η(2ui + vi)− 3ui(1− η)}
3Vi(η)

+
2η3[η(2ui + vi)−

√
Hi]

3

3[ui + η(2ui + vi)]3
+

6uiη
2(1− η){ui + η(ui + vi)− η

√
Hi}2

3Vi(η){ui + η(2ui + vi)}2

− 2η2{(3ui + vi)− η(2ui + vi)}{ui + η(ui + vi)− η
√
Hi}3

3Vi(η){ui + η(2ui + vi)}3
,

Hi = ui(ui + vi) + ηvi(2ui + vi), σ(ui, vi, η) =







maxσ1(ui, vi, η), 0 ≤ η ≤ ui+vi
2ui+vi

,

maxσ2(ui, vi, η),
ui+vi
2ui+vi

≤ η ≤ 1,

c∗i := max{σ(ui, vi, η) : 0 ≤ η ≤ 1}, i ∈ J and c∗ = max{c∗i : i ∈ J}.

Proof. Let F∗ = {φ : I → R| φ ∈ C1(I), φ(x1) = f1, φ(xN ) = fN , φ(1)(x1) = d1

and φ(1)(xN ) = dN}. Then (F∗, ρ∗) is a complete metric space, where ρ∗ is the metric

induced by the C1 norm ‖φ‖ = ‖φ‖∞ + ‖(φ)(1)‖∞ on C1(I). The Read-Bajraktarević

operator corresponding to the FIF Φ can be written as T ∗

λ : F∗ → F∗ such that

(T ∗

λφ)(x) = λiφ(L
−1
i (x)) +

pi(L
−1
i (x), λi)

qi(L
−1
i (x))

, x ∈ Ii, i ∈ J,

where pi(x, λi) ≡ Pi(ζ) and qi(x) ≡ Qi(ζ) are as given in (3.3). It is known that Φ is

the fixed point of the operator T ∗

λ with λ 6= 0. Also, classical rational cubic spline C

is the fixed point of T ∗

λ with λ = 0 = (0, 0, . . . , 0) ∈ R
N−1. Let λ = (λ1, λ2, . . . , λN−1)

be a scale vector such that |λi| < ai for all i ∈ J and with at least one λi 6= 0. For

λ 6= 0, T ∗

λ is a contraction map with uniform metric. Hence

‖T ∗

λΦ− T ∗

λC‖∞ ≤ |λ|∞‖Φ− C‖∞. (4.1)

Also for x ∈ Ii, we have

|T ∗

λC(x) − T ∗

0
C(x)| =

∣

∣

∣

∣

λi C ◦ L−1
i (x) +

pi(L
−1
i (x), λi)

qi(L
−1
i (x))

− pi(L
−1
i (x), 0)

qi(L
−1
i (x))

∣

∣

∣

∣

≤ |λi|‖C‖∞ +
|pi(L−1

i (x), λi)− pi(L
−1
i (x), 0)|

qi(L
−1
i (x))

.

(4.2)

Using the mean-value theorem for functions of several variables, there exists β =

(β1,β2,. . . , βN−1) such that |βi| < |λi| and

pi(L
−1
i (x), λi)− pi(L

−1
i (x), 0) =

(

∂

∂λi

(pi(L
−1
i (x), βi))

)

λi. (4.3)
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From (4.2) and (4.3), we can obtain

|T ∗

λC(x) − T ∗

0
C(x)| ≤ |λi|

(

‖C‖∞ +

∣

∣

∣

∣

∣

∂

∂λi

(

pi(L
−1
i (x), βi)

qi(L
−1
i (x))

)

∣

∣

∣

∣

∣

)

. (4.4)

To find the bound for the right hand side of (4.4), the classical rational cubic inter-

polant C can be written as

C(x) = w1(ui, vi, η)fi + w2(ui, vi, η)fi+1 + w3(ui, vi, η)di − w4(ui, vi, η)di+1, (4.5)

where

w1(ui, vi, η) =
ui(1 − η)3 + (3ui + vi)η(1 − η)2

Vi(η)
, w3(ui, vi, η) =

uihiη(1 − η)2

Vi(η)
,

w2(ui, vi, η) =
(3ui + vi)η

2(1− η) + uiη
3

Vi(η)
and w4(ui, vi, η) =

uihiη
2(1− η)

Vi(η)
.

It can be observed that

w1(ui, vi, η) + w2(ui, vi, η) = 1.

Also, we get

w3(ui, vi, η) + w4(ui, vi, η) =
uihiη(1− η)2 + uihiη

2(1− η)

ui + viη(1 − η)

≤ uihiη(1− η)2 + uihiη
2(1− η)

ui

= hiη(1− η).

From (4.5), we obtain

|C(x)| ≤ max{|fi|, |fi+1|}+
hi

4
max{|di|, |di+1|}

= Mi +
hi

4
Mi,

where Mi = max{|fi|, |fi+1|} and Mi = max{|di|, |di+1|}.
Thus, we have

‖C‖∞ ≤ M +
h

4
M. (4.6)

It can be noticed that

∂

∂λi

(

pi(L
−1
i (x), βi)

qi(L
−1
i (x))

)

=− w∗

1(ui, vi, η)f1 − w∗

2(ui, vi, η)fN − w∗

3(ui, vi, η)d1

+ w∗

4(ui, vi, η)dN ,
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where

w∗

1(ui, vi, η) =
ui(1 − η)3 + (3ui + vi)η(1 − η)2

Vi(η)
,

w∗

2(ui, vi, η) =
(3ui + vi)η

2(1 − η) + uiη
3

Vi(η)
,

w∗

3(ui, vi, η) =
ui(xN − x1)η(1 − η)2

Vi(η)
, and

w∗

4(ui, vi, η) =
ui(xN − x1)η

2(1− η)

Vi(η)
.

Thus, we have
∣

∣

∣

∣

∣

∂

∂λi

(

pi(L
−1
i (x), βi)

qi(L
−1
i (x))

)

∣

∣

∣

∣

∣

≤|w∗

1(ui, vi, η)f1|+ |w∗

2(ui, vi, η)fN |+ |w∗

3(ui, vi, η)d1|

+ |w∗

4(ui, vi, η)dN |.

By using a similar procedure for finding the bound for ‖C‖∞, it is easy to see that
∣

∣

∣

∣

∣

∂

∂λi

(

pi(L
−1
i (x), βi)

qi(L
−1
i (x))

)

∣

∣

∣

∣

∣

≤ M∗ +
|I|
4
M∗. (4.7)

From (4.4), (4.6) and (4.7), we obtain

|T ∗

λC(x) − T ∗

0
C(x)| ≤ |λ|∞([M +

h

4
M ] + [M∗ +

|I|
4
M∗]), for x ∈ Ii.

Since this inequality does not depend on the interval, we have

‖T ∗

λC − T ∗

0
C‖∞ ≤ |λ|∞([M +

h

4
M ] + [M∗ +

|I|
4
M∗]). (4.8)

From (4.1) and (4.8), we get

‖Φ− C‖∞ = ‖T ∗

λΦ− T ∗

0
C‖∞ ≤ ‖T ∗

λΦ− T ∗

λC‖∞ + ‖T ∗

λC − T ∗

0
C‖∞,

which implies

‖Φ− C‖∞ ≤ 1

(1− |λ|∞)

[

|λ|∞
(

[M +
h

4
M ] + [M∗ +

|I|
4
M∗]

)]

. (4.9)

From [20], the error bound between original function S and the classical rational cubic

spline C is

‖S − C‖∞ ≤ 1

2
‖S(3)‖∞h3c∗. (4.10)

Using (4.9) and (4.10) with the following inequality

‖S − Φ‖∞ ≤ ‖S − C‖∞ + ‖C − Φ‖∞,

we get the required bound for ‖S − Φ‖∞.
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Remark 4.2. Since |λi| < ai = hi/(xN − x1), i ∈ J , it can be seen that ‖S −
Φ‖∞ =O(h).

• If |λi| < a2i , then ‖S − Φ‖∞ =O(h2),

• If |λi| < a3i , then ‖S − Φ‖∞ =O(h3).

5. SHAPE PRESERVING ASPECTS OF FIF

Apart from interpolating the data, many times it is required that interpolant should

satisfy the properties which inherited in the data. In this section, shape preserving as-

pects of the rational cubic FIF (3.3) are developed. There are different kinds of shape

preserving aspects like positivity, monotonicity and convexity etc. Choosing random

scaling factors and shape parameters, FIF (3.3) may not satisfy these properties. So

it is required to find conditions on the scaling factors and the shape parameters to

preserve these shape aspects.

5.1. POSITIVITY OF FIF

In the following theorem, the sufficient conditions on the scaling factors and the shape

parameters are obtained to ensure the positivity of FIF.

Theorem 5.1. Let {(xi, fi) : i = 1, 2, . . . , N} be a data such that fi > 0, i =

1, 2, . . . , N. Let di, i = 1, 2, . . . , N be the derivative value at the knot xi. Then the

following conditions on the scaling factors and the shape parameters are sufficient to

the FIF (3.3) to satisfy the positivity conditions:

0 ≤ λi < min
{

ai,
fi
f1

,
fi+1

fN

}

,

ui > 0 and vi > max
{

0, γ1i, γ2i

}

,

where

γ1i =
−uihidi + λiui(xN − x1)d1

fi − λif1
, γ2i =

uihidi+1 − λiui(xN − x1)dN
fi+1 − λifN

, i ∈ J.

Proof. The FIF Φ is positive if Φ(x) > 0 for all x ∈ [x1, xN ]. For each node xj , j =

1, 2, . . . , N we obtain

Φ(Li(xj)) = λiΦ(xj) +
Pi(ζj)

Qi(ζj)
, ζj =

xj − x1

xN − x1
, i ∈ J.
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Assume that λi ≥ 0, i ∈ J. Also ui > 0 and vi > 0 gives Qi(ζj) > 0. So Φ(Li(xj)) >

0, i ∈ J, j = 1, 2, . . . , N , if Pi(ζj) > 0. Now, we have

Pi(ζj) = A1,i(1− ζj)
3 +A2,iζj(1− ζj)

2 +A3,iζj
2(1 − ζj) +A4,iζj

3.

It can be seen that Pi(ζj) > 0 if A1,i > 0, A2,i > 0, A3,i > 0 and A4,i > 0. We get

A1,i > 0 if λi <
fi
f1

and A4,i > 0 if λi <
fi+1

fN
.

Let 0 ≤ λi <
{

fi
f1
, fi+1

fN

}

. Then we have

A2,i > 0 if vi >
−uihidi + λiui(xN − x1)d1

fi − λif1
.

Also, we get

A3,i > 0 if vi >
uihidi+1 − λiui(xN − x1)dN

fi+1 − λifN
.

From the above results, it is clear that Φ(Li(xj)) > 0 for all i ∈ J , j = 1, 2, . . . , N if the

scaling factors and the shape parameters satisfy the sufficient conditions given in the

statement of Theorem 5.1. Since the FIF has recursive nature, therefore, Φ(Li(xj)) >

0, for all i ∈ J, j = 1, 2, . . . , N which in turn Φ(x) > 0 for all x ∈ [x1, xN ].

Remark 5.2. If λi = 0, i ∈ J , FIF (3.3) reduces to the classical rational cubic

spline (3.6). Then

ui > 0 and vi > max
{

0,
−uihidi

fi
,
uihidi+1

fi+1

}

become the sufficient conditions for the classical rational spline to be positive.

5.2. MONOTONICITY OF FIF

Let {(xi, fi) : i = 1, 2, . . . , N} be a monotonic data. Let di be the derivative value of

the unknown function at the knot xi. Without loss of generality assume that the data

is monotonically increasing i.e., f1 ≤ f2 ≤ · · · ≤ fN . Then ∆i = (fi+1 − fi)/(xi+1 −
xi) ≥ 0, i ∈ J . From calculus, Φ is monotonically increasing in [x1, xN ] if Φ(1)(x) ≥ 0,

for all x ∈ [x1, xN ]. We have

Φ(1)(Li(x)) =
λiΦ

(1)(x)

ai
+

Ψi(ζ)

(Qi(ζ))2
,

where Ψi(ζ) =
5
∑

k=1

Bk,iζ
k−1(1− ζ)5−k,

B1,i = u2
i d

∗

i ,
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B2,i = 2ui{(3ui + vi)∆
∗

i − uid
∗

i+1},

B3,i = 3u2
i∆

∗

i + (3ui + vi){(3ui + vi)∆
∗

i − uid
∗

i+1 − uid
∗

i },

B4,i = 2ui{(3ui + vi)∆
∗

i − uid
∗

i },

B5,i = u2
i d

∗

i+1,

d∗i = di −
λid1
ai

, d∗i+1 = di+1 −
λidN
ai

and ∆∗

i = ∆i − λi

fN − f1
hi

.

Theorem 5.3. Let {(xi, fi, di) : i = 1, 2, . . . , N} be a monotonically increasing

data. Let the derivative values satisfy the necessary condition for monotonicity, i.e.,

sgn(di) = sgn(di+1) = sgn(∆i). Then the following conditions on the scaling fac-

tors and the shape parameters are sufficient to the FIF Φ defined in (3.3) to satisfy

monotonicity:

0 ≤ λi <

{

ai,
aidi
d1

,
aidi+1

dN
,
fi+1 − fi
fN − f1

}

,

ui > 0 and vi > max
{

0,
ui(d

∗

i + d∗i+1)

∆∗

i

}

, i ∈ J.

Proof. Φ(x) is monotonically increasing, if Φ(1)(x) ≥ 0, x ∈ [x1, xN ]. For each node

xj , j = 1,2,. . . ,N , we have

Φ(1)(Li(xj)) =
λiΦ

(1)(xj)

ai
+

Ψi(ζj)

(Qi(ζj))2
, ζj =

xj − x1

xN − x1
, i ∈ J.

Assume λi ≥ 0, i ∈ J . It can be seen that (Qi(ζj))
2 > 0. Therefore, Φ(1)(Li(xj)) ≥ 0,

if Ψi(ζj) ≥ 0. We have

Ψi(ζj) = B1,i(1− ζj)
4 +B2,iζj(1− ζj)

3 +B3,iζj
2(1− ζj)

2 +B4,iζj
3(1− ζj) +B5,iζ

4
j .

It can be seen that Ψi(ζj) ≥ 0, if B1,i ≥ 0, B2,i ≥ 0, B3,i ≥ 0, B4,i ≥ 0 and B5,i ≥ 0.

We have

B1,i ≥ 0 if λi ≤
aidi
d1

, B5,i ≥ 0 if λi ≤
aidi+1

dN
.

Let 0 ≤ λi <
{

aidi

d1
, aidi+1

dN

, fi+1−fi
fN−f1

}

. We get

B2,i ≥ 0 if vi ≥
uid

∗

i+1

∆∗

i

, B3,i ≥ 0 if vi ≥
ui(d

∗

i + d∗i+1)

∆∗

i

, B5,i ≥ 0 if vi ≥
uid

∗

i

∆∗

i

.

So according to the conditions prescribed in Theorem 5.3, it is clear that Φ(1)(Li(xj))

≥ 0 for all j ∈ J, i = 1, 2, . . . , N . Since Φ(1) is also a fractal function and it has

recursive nature, the condition Φ(1)(Li(xj)) ≥ 0, i ∈ J, j = 1, 2, . . . , N gives Φ(1)(x) ≥
0 for all x ∈ [x1, xN ].
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Remark 5.4. If λi = 0, i ∈ J then the sufficient conditions for classical rational

cubic spline (3.6) which preserves the monotonicity are

ui > 0 and vi > max
{

0,
ui(di + di+1)

∆i

}

, i ∈ J.

5.3. CONVEXITY OF FIF

A data {(xi, fi) : i = 1, 2, . . . , N} is said to be convex if ∆1 ≤ ∆2 ≤ · · · ≤ ∆i−1 ≤
∆i ≤ · · · ≤ ∆N−1. Assume that the data {(xi, fi) : i = 1, 2, ..., N} is strictly convex.

To avoid the possibility of straight line segments, assume that d1 < ∆1 < ... < di <

∆i < di+1 < ... < ∆N−1 < dN . In this section, sufficient conditions on the scaling

factors and the shape parameters will be determined to ensure the convexity of the

FIF (3.3).

Theorem 5.5. Suppose {(xi, fi) : i = 1, 2, ..., N} is a strictly convex data. Let di be

the derivative value at the knot xi. Let the derivative values satisfy d1 < ∆1 < ... <

di < ∆i < di+1 < ... < ∆N−1 < dN . Then sufficient conditions on the scaling factors

and the shape parameters to ensure convexity of Φ in (3.3) are

0 ≤ λi < min
{

a
2
i ,

hi(di+1 −∆i)

dN(xN − x1)− (fN − f1)
,

hi(∆i − di)

(fN − f1)− d1(xN − x1)
,
ai(di+1 − di)

(dN − d1)

}

,

ui > 0 and vi > max
{ui(d

∗

i+1 −∆∗

i )

(∆∗

i − d∗i )
,
ui(∆

∗

i − d∗i )

(d∗i+1 −∆∗

i )

}

.

Proof. Since Φ belongs to C1, Φ is convex, if Φ(2)(x+) or Φ(2)(x−) exists and non-

negative for all x ∈ (x1, xN )[4, 17]. We have

Φ(2)(Li(x)) =
λiΦ

(2)(x)

a2i
+

Ψ∗

i (ζ)

hi(Qi(ζ))3
,

where Ψ∗

i (ζ) =

6
∑

k=1

Ck,iζ
k−1(1− ζ)6−k,

C1,i = 2u2
i {(2ui + vi)(∆

∗

i − d∗i )− ui(d
∗

i+1 −∆∗

i )},

C2,i = 2u2
i {7ui(∆

∗

i − d∗i ) + 2vi(∆
∗

i − d∗i )− 2ui(d
∗

i+1 −∆∗

i )},

C3,i = 2ui{(6u2
i + uivi)(∆

∗

i − d∗i ) + 2u2
i (d

∗

i+1 − d∗i )},

C4,i = 2ui{(6u2
i + uivi)(d

∗

i+1 −∆∗

i ) + 2u2
i (d

∗

i+1 − d∗i )},

C5,i = 2u2
i {7ui(d

∗

i+1 −∆∗

i ) + 2vi(d
∗

i+1 −∆∗

i )− 2ui(∆
∗

i − d∗i )},

C6,i = 2u2
i {(2ui + vi)(d

∗

i+1 −∆∗

i )− ui(∆
∗

i − d∗i )},
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d∗i = di − λid1

ai

, d∗i+1 = di+1 − λidN

ai

, ∆∗

i = ∆i − λi
fN−f1

hi

.

Now, we get

Φ(2)(x+
1 ) =

C1,1

h1u3
1

[

1− λ1

a21

]

−1

, (5.1)

Φ(2)(x−

N ) =
C6,N−1

hN−1u3
N−1

[

1− λN−1

a2N−1

]

−1

, (5.2)

Φ(2)(x+
n ) =

λn

a2n
Φ(2)(x+

1 ) +
C1,n

u3
nhn

, n = 2, 3, . . . , N − 1.

(5.3)

Let 0 ≤ λi < a2i , i ∈ J. From (5.1), (5.2) and (5.3), it is evident that if C1,i ≥ 0, i ∈ J

and C6,N−1 ≥ 0, then the right-handed second derivatives at the knots xi, i ∈ J and

the left-handed second derivative at xN are nonnegative. For a knot point xn, n ∈ J

we get

Φ(2)(Li(x
+
n )) =

λiΦ
(2)(x+

n )

a2i
+Ri(x

+
n ), i ∈ J,

where Ri(x) = Ri(x1 + ζ(xN − x1)) = Ψ∗

i (ζ)/(hi(Qi(ζ))
3). Assuming that C1,i ≥

0, i ∈ J , we get Φ(2)(Li(x
+
n )) ≥ 0 if Ri(x

+
n ) ≥ 0. Note that Ri(x

+
n ) ≥ 0, if the

coefficients Cj,i ≥ 0, for j = 1, 2, . . . , 6. Using the Three chords lemma for the convex

functions [4], the convex data should satisfy d1 < (fN − f1)/(xN − x1) < dN . One

can see that

(∆∗

i − d∗i ) > 0, if λi <
hi(∆i − di)

(fN − f1)− d1(xN − x1)
,

(d∗i+1 −∆∗

i ) > 0, if λi <
hi(di+1 −∆i)

dN (xN − x1)− (fN − f1)
,

(d∗i+1 − d∗i ) > 0, if λi <
ai(di+1 − di)

(dN − d1)
.

Let

0 ≤ λi < min
{

hi(di+1 −∆i)

dN (xN − x1)− (fN − f1)
,

hi(∆i − di)

(fN − f1)− d1(xN − x1)
,
ai(di+1 − di)

(dN − d1)

}

. (5.4)

It can be seen that

C1,i ≥ 0 ⇔ (2ui + vi)(∆
∗

i − d∗i )− ui(d
∗

i+1 −∆∗

i ) ≥ 0.

(2ui + vi)(∆
∗

i − d∗i )− ui(d
∗

i+1 −∆∗

i ) ≥ 0, if vi ≥
ui(d

∗

i+1 −∆∗

i )

(∆∗

i − d∗i )
.

C2,i ≥ 0 ⇔ 7ui(∆
∗

i − d∗i ) + 2vi(∆
∗

i − d∗i )− 2ui(d
∗

i+1 −∆∗

i ) ≥ 0.

7ui(∆
∗

i − d∗i ) + 2vi(∆
∗

i − d∗i )− 2ui(d
∗

i+1 −∆∗

i ) ≥ 0, if vi ≥
ui(d

∗

i+1 −∆∗

i )

(∆∗

i − d∗i )
.

C3,i ≥ 0 ⇔ (6u2
i + uivi)(∆

∗

i − d∗i ) + 2u2
i (d

∗

i+1 − d∗i ) ≥ 0.



198 N. BALASUBRAMANI, M.G.P. PRASAD, AND S. NATESAN

The assumption on the scaling factor given in (5.4) ensures that C3,i ≥ 0.

C4,i ≥ 0 ⇔ (6u2
i + uivi)(d

∗

i+1 −∆∗

i ) + 2u2
i (d

∗

i+1 − d∗i ) ≥ 0.

The assumption on the scaling factor given in (5.4) shows that C4,i ≥ 0. Similarly,

one can observe that

C5,i ≥ 0, if vi ≥
ui(∆

∗

i − d∗i )

(d∗i+1 −∆∗

i )
,

C6,i ≥ 0, if vi ≥
ui(∆

∗

i − d∗i )

(d∗i+1 −∆∗

i )
.

Thus the conditions on the scaling factors and the shape parameters given in Theorem

5.5 ensure Cj,i ≥ 0, i ∈ J, j = 1, 2, . . . , 6 and hence the nonnegativity of Φ(2)(Li(x
+
n ))

for i, n ∈ J , Φ(2)(x−

N ). The nonnegativity of Φ(2)(Li(x
+
n )) for i, n ∈ J , and Φ(2)(x−

N )

ensures Φ(2)(x+) or Φ(2)(x−) for x ∈ (x1, xN ).

Remark 5.6. If λi = 0, then the conditions

ui > 0 and vi > max
{ui(di+1 −∆i)

(∆i − di)
,
ui(∆i − di)

(di+1 −∆i)

}

,

are the sufficient conditions for the classical rational cubic spline (3.6) to be convex.

Remark 5.7. If ∆i − di = 0 or di+1 −∆i = 0, then take λi = 0, di = di+1 = ∆i.

In this case, Φ becomes a straight line Φ(Li(x)) = fi(1 − ζ) + fi+1ζ in the interval

[xi, xi+1].

5.4. CONSTRAINED FIF

Let {(xi, fi) : i = 1, 2, . . . , N} be the data such that it lies above the straight line

y = mx + c, i.e., fi > yi where yi = mxi + c. Then, in general, the FIF Φ may not

lie above the line y = mx + c in [x1, xN ]. In this subsection, sufficient conditions

on the scaling factors and the shape parameters are derived such that Φ would lie

above the straight line y = mx + c. The straight line y = mx + c can be written as

y1(1− ζ) + yNζ, ζ = (x− x1)/(x1 − xN ), x ∈ [x1, xN ]. The FIF Φ lies above straight

line y1(1 − ζ) + yNζ if Φ(x) > y1(1 − ζ) + yNζ, for all x ∈ [x1, xN ]. Since the graph

of Φ is the attractor of the IFS (3.5), it is evident that Φ(x) > y1(1 − ζ) + yNζ, for

all x ∈ [x1, xN ] if Fi(x, f) > yi(1 − ζ) + yi+1ζ for all (x, f) such that x ∈ [x1, xN ],

f > y1(1− ζ) + yNζ, i = 1, 2, . . . , N − 1.

Theorem 5.8. Let {(xi, fi) : i = 1, 2, . . . , N} be the data such that it lies above the

straight line y = mx+ c, i.e., fi > yi where yi = mxi + c. Then the FIF Φ defined in
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(3.3) lies above the straight line y = mx+ c in [x1, xN ], if the scaling factors and the

shape parameters satisfy the following conditions:

0 ≤ λi < min

{

ai,
fi − yi
f1 − y1

,
fi+1 − yi+1

fN − yN

}

,

ui > 0 and vi > max
{

0, δ1,i, δ2,i

}

,

where

δ1,i =
−ui[(fi − yi+1)− λi(f1 − yN )]− ui[hidi − λi(xN − x1)d1]

(fi − yi)− λi(f1 − y1)
,

δ2,i =
−ui[(fi+1 − yi)− λi(fN − y1)]− ui[−hidi+1 + λi(xN − x1)dN ]

(fi+1 − yi+1)− λi(fN − yN)
,

i = 1, 2, . . . , N − 1.

Proof. For each fixed i = 1, 2, . . . , N − 1, let 0 ≤ λi < ai and (x, f) such that

x ∈ [x1, xN ] and f > y1(1 − ζ) + yNζ. It is evident that fλi > [y1(1 − ζ) + yNζ]λi.

We have

λif +
Pi(ζ)

Qi(ζ)
> [y1(1− ζ) + yNζ]λi +

Pi(ζ)

Qi(ζ)
.

To prove Fi(x, f) > yi(1− ζ) + yi+1ζ, it is enough to prove that

[y1(1− ζ) + yNζ]λi +
Pi(ζ)

Qi(ζ)
> yi(1− ζ) + yi+1ζ, (5.5)

Now (5.5) can be written as

Qi(ζ)[(λiy1 − yi)(1 − ζ) + (λiyN − yi+1)ζ] + Pi(ζ)

Qi(ζ)
> 0. (5.6)

Since Qi(ζ) > 0, to prove (5.6), it is sufficient to show that Qi(ζ)[(λiy1 − yi)(1 −
ζ) + (λiyN − yi+1)ζ] + Pi(ζ) > 0. The numerator Qi(ζ)[(λiy1 − yi)(1 − ζ) + (λiyN −
yi+1)ζ] +Pi(ζ) can be written as Qi(ζ)[(λiy1 − yi)(1− ζ) + (λiyN − yi+1)ζ] +Pi(ζ) =

D1,i(1− ζ)3 +D2,iζ(1 − ζ)2 +D3,iζ
2(1− ζ) +D4,iζ

3, where

D1,i =ui[(fi − yi)− λi(f1 − y1)], D4,i = ui[(fi+1 − yi+1)− λi(fN − yN )],

D2,i =(2ui + vi)[(fi − yi)− λi(f1 − y1)] + ui[(fi − yi+1)− λi(f1 − yN)]

+ ui[hidi − λi(xN − x1)d1],

D3,i =(2ui + vi)[(fi+1 − yi+1)− λi(fN − yN)] + ui[(fi+1 − yi)− λi(fN − y1)]

+ ui[−hidi+1 + λi(xN − x1)dN ].



200 N. BALASUBRAMANI, M.G.P. PRASAD, AND S. NATESAN

It can be seen that Qi(ζ)[(λiy1 − yi)(1 − ζ) + (λiyN − yi+1)ζ] + Pi(ζ) > 0, if all the

coefficients Dj,i > 0, j = 1, 2, . . . , 4. We have

D1,i > 0, if λi <
fi − yi
f1 − y1

, D4,i > 0, if λi <
fi+1 − yi+1

fN − yN
.

Let 0 ≤ λi < min
{

fi−yi

f1−y1
, fi+1−yi+1

fN−yN

}

. The coefficient D2,i > 0, if

vi >
−ui[(fi − yi+1)− λi(f1 − yN )]− ui[hidi − λi(xN − x1)d1]

(fi − yi)− λi(f1 − y1)
.

The coefficient D3,i > 0, if

vi >
−ui[(fi+1 − yi)− λi(fN − y1)]− ui[−hidi+1 + λi(xN − x1)dN ]

(fi+1 − yi+1)− λi(fN − yN )
.

Thus the sufficient conditions on the scaling factors and the shape parameters to

satisfy (5.5) are

0 ≤ λi < min
{

ai,
fi − yi
f1 − y1

,
fi+1 − yi+1

fN − yN

}

,

ui > 0 and vi > max
{

δ1,i, δ2,i

}

,

i = 1, 2, . . . , N − 1.

6. NUMERICAL EXAMPLES

In this section, the effectiveness of the FIF (3.3) towards the visualization of the

shaped data is illustrated through numerical examples.

Example 6.1. Consider the positive data set { (1, 14), (2, 8), (3, 2), (8, 0.8), (10, 0.5),
(11, 0.25), (12, 0.4), (14, 0.37) }as used in [20]. Using the arithmetic mean method,

the derivatives are approximated and are given by d1 = −6.0000, d2 = −6.0000, d3 =

−5.0400, d4 = −0.1757, d5 = −0.2167, d6 = −0.0500, d7 = 0.0950 and d8 = −0.1250.

Figure 2(a) represents a nonpositive FIF which is drawn based on an arbitrary

scaling factors and shape parameters. According to restrictions given in Theorem 5.1,

the scaling factors and shape parameters are restricted. Figure 2(b) is a positive FIF

which is drawn based on these restrictions.

To demonstrate the effect of the scaling factors on the FIF given in Figure 2(b),

by perturbing the scaling factors λ3 and λ4, the FIF in Figure 2(c) is constructed.

There are significant changes in Figure 2(c) in the intervals [x3, x4] and [x4, x5] in

which the curve becomes smooth and moves upward. Whereas the changes in the

other intervals are not significantly visible.
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To demonstrate the effect of shape parameters on the FIF given in Figure 2(b),

the FIF in Figure 2(d) is constructed by changing the shape parameters v3 and v4.

There is a little change in the intervals [x3, x4] and [x4, x5], but there is no significant

changes in the other intervals.

Figure 2(e) is constructed by perturbing the scaling factors λ5, λ6 and λ7 with

respect to Figure 2(b). Observe that the FIF becomes smooth in the corresponding

intervals. Finally, the classical rational cubic spline is constructed by taking all scaling

factors as zero and it is shown in Figure 2(f). The values of scaling factors and shape

parameters used in drawing various FIFs in Figure 2 are given in Table 2.

Example 6.2. Next consider the monotonic data set { (0, 0.5), (2.5, 1.61), (3, 7.3891),
(6, 9.8696), (11, 22.18), (15, 27.3),(20, 35.2) } [8]. The derivatives are computed us-

ing arithmetic mean method and are given by d1 = 0, d2 = 9.7058, d3 = 10.0251,

d4 = 1.4401, d5 = 1.8054, d6 = 1.4133 and d7 = 1.7467. According to restrictions

given in Theorem 5.3, the scaling factors and the shape parameters are restricted.

Figure 3(a) represents a monotonic FIF which passes through a monotonic data.

To demonstrate the effect of the scaling factors on the FIF given in Figure 3(a), by

perturbing the scaling factors λ1 and λ3, the FIF in Figure 3(b) is constructed. Visible

changes occurred in the intervals [x1, x2] and [x3, x4], whereas changes in the other

intervals are not visible.

Similarly by perturbing the scaling factors λ4, λ5 and λ6 with respect to Figure

3(a), Figure 3(c) is constructed. Curve between the corresponding intervals moving

towards a straight line. To demonstrate the effect of the shape parameters on the

FIF in Figure 3(a), the FIF in Figure 3(d) is constructed by changing the shape

parameters v3 and v4. In similar fashion, we perturb the shape parameters v5 and v6

with respect to Figure 3(a), to construct Figure 3(e). Finally by taking all the scaling

factors are zero, classical rational cubic spline is constructed and is shown in Figure

3(f). The values of the scaling factors and the shape parameters used in drawing

various FIFs in Figure 3 are given in Table 3.

Example 6.3. Next consider the convex data { (1, 10), (2, 2.5), (4, 0.625), (5, 0.4),

(10, 0.1) } as given in [20]. Using arithmetic mean method, the derivatives are approx-

imated and are given by d1 = −9.6875, d2 = −5.3125, d3 = −0.4625, d4 = −0.1975

and d5 = 0.

Figure 4(a) represents a nonconvex FIF which is drawn based on an arbitrary

scaling factors and shape parameters. According to the restrictions given in Theorem

5.5, the scaling factors and the shape parameters are restricted. Figure 4(b) is a

convex FIF which is drawn based on these restrictions.

To demonstrate the effect of the scaling factors on the FIF in Figure 4(b), by

perturbing the scaling factor λ2, the FIF in Figure 4(c) is drawn. From Figure 4(c)
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it is evident that significant change occurred in the interval [x2, x3] i.e., the curve

becomes more smooth in this interval and changes in other intervals are negligible.

To demonstrate the effect of the shape parameters on the FIF in Figure 4(b),

by perturbing shape parameter v2, the FIF in Figure 4(d) is constructed. In the

interval [x2, x3], curve moves upward and whereas in other intervals the changes are

not visible. By taking all the scaling factors are zero, Figure 4(e) is drawn which is

classical rational cubic spline preserving convexity. By taking arbitrary scaling factors

and shape parameters Figure 4(f) is drawn. The values of the scaling factors and the

shape parameters used in drawing various FIFs in Figure 4 are given in Table 4.

Example 6.4. Next, by considering the interpolation data { (1, 2.5), (1.25, 1.5),

(2.8, 2), (3, 2.5), (3.2, 3.5),(4.2, 4.5), (4.5, 5, 5) } which lies above the line y = 0.5x+

0.28, the FIF is constructed. By taking arbitrary scaling factors and shape parameters

Figure 5(a) is constructed. From Figure 5(a), it is clear that FIF does not lying above

the line y = 0.5x+ 0.28. Therefore, the scaling factors and the shape parameters are

taken according to Theorem 5.8 and using this, Figure 5(b) is drawn. In Figure 5(b),

it is observed that the FIF lies above the line y = 0.5x+0.28. After perturbing scaling

factor λ5 with respect to Figure 5(b), Figure 5(c) is constructed. In a similar fashion,

after perturbing the shape parameter v5 with respect to Figure 5(b), Figure 5(d)

is drawn. Classical constrained FIF is constructed by taking all the scaling factors

are zero which is shown in Figure 5(e). By taking random scaling factors and shape

parameters, Figure 5(f) is constructed. The parameters used to construct Figure 5

are given in Table 5.

7. CONCLUSION

To interpolate the data, a new rational cubic fractal interpolation function is thus con-

structed with the help of rational spline. The conditions derived on the scaling factors

and half of the shape parameters to preserve the shapes of the data makes it compu-

tationally economical. By perturbing the scaling factors and the shape parameters,

shape of the curve can be modified according to desire. Therefore, the constructed

FIF has more influence on shape preserving problem. By imposing suitable conditions

on the scaling factors, the FIF has O(h3) accuracy if the original function belongs to

the class C3.
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Table 2: Parameters for positive FIFs with ui = 1.5 for i = 1, 2, . . . , 7.

parameter Figure 2(a) Figure 2(b) Figure 2(c) Figure 2(d) Figure 2(e) Figure 2(f)

λ1 0.1000 0.0754 0.0754 0.0754 0.0754 0

λ2 0.2300 0.0754 0.0754 0.0754 0.0754 0

λ3 0.0300 0.1324 0.0132 0.1324 0.1324 0

λ4 0.0600 0.0471 0.0271 0.0471 0.0471 0

λ5 0.0420 0.0347 0.0347 0.0347 0.0034 0

λ6 0.0500 0.0169 0.0169 0.0169 0.0016 0

λ7 0.0450 0.0266 0.0266 0.0266 0.0026 0

v1 0.5000 0.5000 0.5000 0.5000 0.5000 0.8000

v2 3.5000 1.5000 1.5000 1.5000 1.5000 1.5000

v3 4.0000 153.0000 20.9733 350.0000 153.0000 20.9000

v4 5.6000 2.5000 2.5000 10.5000 2.5000 1.5000

v5 8.5000 1.0000 1.0000 1.0000 4.0000 1.0000

v6 7.9000 3.0000 3.0000 3.0000 7.3000 3.0000

v7 5.0000 0.5000 0.5000 0.5000 2.0000 0.5000

Table 3: Parameters for monotonic FIFs with ui = 1.5 for i = 1, 2, . . . , 6.

parameter Figure 3(a) Figure 3(b) Figure 3(c) Figure 3(d) Figure 3(e) Figure 3(f)

λ1 0.0250 0.0015 0.0250 0.0250 0.0250 0

λ2 0.0240 0.0240 0.0240 0.0240 0.0240 0

λ3 0.0610 0.0210 0.0610 0.0610 0.0610 0

λ4 0.2000 0.2000 0.1000 0.2000 0.2000 0

λ5 0.1360 0.1360 0.0940 0.1360 0.1360 0

λ6 0.2160 0.2160 0.1160 0.2160 0.2160 0

v1 145.7800 35.1300 145.7800 145.7800 145.7800 33.7900

v2 3.7300 3.7300 3.7300 3.7300 3.7300 3.6000

v3 134.0000 32.6400 134.0000 365.0000 134.0000 21.7900

v4 3.2000 3.2000 2.6000 120.0000 3.2000 2.0000

v5 32.4000 32.4000 8.7000 32.4000 250.0000 4.5000

v6 31.6000 31.6000 5.3000 31.6000 280.0000 4.0000
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0 2 4 6 8 10 12 14
0

5

10

15

x

Φ
(x

)

(c) Effect of λ3 and λ4.
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(f) Classical rational interpolant.

Figure 2: Positivity preserving interpolation.

Table 4: Parameters for convex FIFs with ui = 1.5 for i = 1, 2, . . . , 4.

parameter Figure 4(a) Figure 4(b) Figure 4(c) Figure 4(d) Figure 4(e) Figure 4(f)

λ1 0.1000 0.0113 0.0113 0.0113 0 0.0430

λ2 0.2000 0.0434 0.0043 0.0434 0 0.0740

λ3 0.0100 0.0020 0.0020 0.0020 0 0.0100

λ4 0.2000 0.0081 0.0081 0.0081 0 0.0160

v1 2.4000 3.3692 3.3692 3.3692 2.5000 5.6000

v2 14.0000 16.5544 14.9146 50.0000 18.8158 3.0000

v3 4.6000 17.1542 17.1542 17.1542 13.9545 6.2000

v4 3.0000 7.3637 7.3637 7.3637 4.4375 4.0000
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0 5 10 15 20
0

10

20

30

40

x

Φ
(x

)

(d) Effect of v3 and v4.

0 5 10 15 20
0

10

20

30

40

x

Φ
(x

)

(e) Effect of v5 and v6.

0 5 10 15 20
0

10

20

30

40

x

Φ
(x

)

(f) Classical rational interpolant.

Figure 3: Monotonicity preserving interpolation.
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(e) Classical convex interpolant.
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(f) Convex interpolant with arbitrary parame-

ters.

Figure 4: Convexity preserving interpolation.
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(a) Unconstrained FIF.
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(b) Constrained FIF.
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(c) Effect of λ5.
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(d) Effect of v6.
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(e) Classical constrained FIF.
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(f) Constrained FIF with arbitrary parameters.

Figure 5: Constrained interpolation.
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Table 5: Parameters for constrained FIFs with ui = 1.5 for i = 1, 2, . . . , 6.

parameter Figure 5(a) Figure 5(b) Figure 5(c) Figure 5(d) Figure 5(e) Figure 5(f)

λ1 0.07 0.07 0.07 0.07 0 -0.06

λ2 0.4 0.09 0.09 0.09 0 -0.2

λ3 0.05 0.05 0.05 0.05 0 -0.04

λ4 0.05 0.05 0.05 0.05 0 0.05

λ5 0.28 0.28 0.18 0.28 0 -0.18

λ6 0.08 0.08 0.08 0.08 0 0.08

v1 3 3 3 3 3 3

v2 3 46 46 46 14 30

v3 3 3 3 3 3 3

v4 3 3 3 3 3 3

v5 3 3 3 10 3 3

v6 3 3 3 3 3 3
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