
Neural, Parallel, and Scientific Computations, 26, No. 3 (2018), 257-267 ISSN: 1061-5369

A NOTE ON THE EXPONENTIATED

EXPONENTIAL–POISSON SOFTWARE RELIABILITY MODEL

VESSELIN KYURKCHIEV1, HRISTO KISKINOV2,

OLGA RAHNEVA3, AND GEORGI SPASOV4

1,2,4Faculty of Mathematics and Informatics

University of Plovdiv Paisii Hilendarski

24, Tzar Asen Str., 4000 Plovdiv, BULGARIA

3Faculty of Economy and Social Sciences

University of Plovdiv Paisii Hilendarski

24, Tzar Asen Str., 4000 Plovdiv, BULGARIA

ABSTRACT: In this paper we consider an application to the debugging theory of

a class of cumulative exponentiated exponential–Poisson distribution functions intro-

duced by Ramos, Dey, Louzada and Lachos.

By this family of cumulative distribution functions we study the Hausdorff ap-

proximation of the shifted Heaviside step function.

Numerical examples, illustrating our results using the programming environment

Mathematica are presented.

As application in the field of debugging and test theory are given examples with

real data including compatibility modifications, operating system upgrade and signal-

ing message processing from year 2000 using the new software reliability model.
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1. INTRODUCTION

Some extensions of the well-known Poisson, Poisson–exponential, Chen, Exponenti-

ated Chen, modified Weibull and Burr distributions can be found in [1]–[8].
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A software reliability model that uses the ”Gompertz–type correction” is the Expo-

nentiated Exponential–Poisson cumulative distribution function (EEPcdf) introduced

by Ramos, Dey, Louzada and Lachos in [9]:

M(t;λ; θ) =





e
λ 1−e

−θt

1−e−θ − 1

eλ − 1


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α

(1)

where θ > 0; λ > 0; α > 0.

For other software reliability models see [10]– [29].

Without loss of generality we consider the following class of the family (1) with

application to the debugging theory:
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In this note we study the Hausdorff approximation of the shifted Heaviside step

function

ht0(t) =















0, if t < t0,

[0, 1], if t = t0,

1, if t > t0,

by the family (2)–(3).

Hausdorff approximation of some modeling functions can be found in [30]–[35].

Furthermore, we propose a software module (intellectual property) within the

programming environment CAS Mathematica for the analysis. Numerical examples,

illustrating our results are presented.

As application in the field of debugging and test theory we give also real examples

with data provided in [36] using the new software reliability model. The dataset

includes [37] Year 2000 compatibility modifications, operating system upgrade and

signaling message processing.

2. HAUSDORFF APPROXIMATION OF THE SHIFTED

HEAVISIDE STEP FUNCTION

Definition 1. [38] The Hausdorff distance (the H–distance) ρ(f, g) between two

interval functions f, g on Ω ⊆ R, is the distance between their completed graphs F (f)



EXPONENTIAL–POISSON SOFTWARE RELIABILITY MODEL 259

and F (g) considered as closed subsets of Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||},

wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB, xB) in R
2 is ||A−B|| =

max{|tA − tB|, |xA − xB|}.

The one–sided Hausdorff distance d between the function ht0(t) and the function

(2)–(3) satisfies the relation

M1(t0 + d) = 1− d. (4)

The following theorem gives upper and lower bounds for d.

Theorem 2. Let

p = −
1

2
,
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αθλ
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,

r = 2.1q

For the one–sided Hausdorff distance d between ht0(t) and the function (2)–(3) for

q >
e1.05

2.1

the following inequalities hold:

dl =
1

r
< d <

ln r

r
= dr. (5)

Proof. Let us examine the function:

F (d) = M1(t0 + d)− 1 + d. (6)

From F ′(d) > 0 we conclude that the function F is increasing.

Consider the function

G(d) = p+ qd. (7)

From the Taylor expansion we obtain G(d)− F (d) = O(d2).

Hence G(d) approximates F (d) with d → 0 as O(d2) (see Fig. 1).

In addition G′(d) > 0.

Further, for q > e1.05

2.1 we have G(dl) < 0 and G(dr) > 0.

This completes the proof of the theorem.
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Figure 1: The functions F (d) and G(d) for θ = 10;λ = 0.5;α = 3.5.

The model (2)–(3) for θ = 10, λ = 0.5, α = 3.5, t0 = 0.191957 is visualized on

Fig. 2. From the nonlinear equation (4) and inequalities (5) we have: d = 0.14436,

dl = 0.101423, dr = 0.232102.

The model (2)–(3) for θ = 10, λ = 0.05, α = 0.5, t0 = 0.0293988 is visualized on

Fig. 3. From the nonlinear equation (4) and inequalities (5) we have: d = 0.120798,

dl = 0.0569498, dr = 0.163195.

From the above examples, it can be seen that the proven estimates in Theorem 2

for the value of the Hausdorff approximation are reliable when assessing the important

characteristic - ”saturation”. This characteristic has its equal participation together

with the other two characteristics - ”confidence intervals” and ”confidence bounds”

in the area of the software reliability theory.

We propose a software module (intellectual property) within the programming

environment CAS Mathematica for the analysis of the considered family M1(t).

The module offers the following possibilities:

- generation of the function under user defined values of the parameters λ, α and

θ;

- calculation of the H-distance d between the function ht0(t) and the function

M1(t);

- software tools for animation and visualization.
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Figure 2: The model (2)–(3) for θ = 8, λ = 0.5, t0 = 0.103098; H–distance

d = 0.155378, dl = 0.103958, dr = 0.235337.

Figure 3: The model (2)–(3) for β = 15, λ = 0.01, t0 = 0.0463767; H–distance

d = 0.104496, dl = 0.0561458, dr = 0.161689.
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3. APPLICATION IN THE FIELD OF DEBUGGING AND TEST

THEORY

We give real examples with data provided in [36].

The operating time of the software is 167,900 days. 115 failures are detected for

these days which contain 71 unique failures.

Table 1 shows the failures data which are united for each of the 13 months.

The dataset includes [37] Year 2000 compatibility modifications, operating system

upgrade and signaling message processing.

Month In-

dex

System Days

(Days)

System Days (Cu-

mulative)

Failures Cumulative

Failures

1 961 961 7 7

2 4170 5131 3 10

3 8789 13,920 14 24

4 11,858 25,778 8 32

5 13,110 38,888 11 43

6 14,198 53,086 8 51

7 14,265 67,351 7 58

8 15,175 82,526 19 77

9 15,376 97,902 17 94

10 15,704 113,606 6 100

11 18,182 131,788 11 111

12 17,760 149,548 4 115

13 18,352 167,900 0 115

Table 1. Field failure data [36].

The fitted model

M1(t) = ω





e
λ 1−e

−θt

1−e−θ − 1

eλ − 1





α

based on the data of Table 1 for the estimated parameters:

ω = 402; θ = 0.23822; λ = 0.830748; α = 19.0736

is plotted on Fig. 4.

We hope that the results will be useful for a lot of specialists in this scientific area.

Remark 3. In [29] the authors developed the following new software reliability

model

M(t) = ω





e
λ 1−e

−θt

1−e−θ − 1

eλ − 1




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Figure 4: The fitted model M1(t).

The model for

ω = 7; θ = 0.142302; λ = 0.317432

is plotted on Fig. 5.

We will explicitly note that in some cases the software reliability model M1(t)

provides better results than other much more sophistical models.
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Figure 5: The fitted model M(t).
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