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1. INTRODUCTION

In this study we investigate the new method developed by Davie [5] which uses cou-

pling and gives order one for the strong convergence for stochastic differential equa-

tions (SDEs). There are many numerical methods for solving SDEs. P.E.Kloeden and

E.Platen [6] have described a method based on the stochastic Taylor series expansion

but the major difficulty with this approach is that the double stochastic integrals can-

not be so easily expressed in terms of simpler stochastic integrals when the Wiener

process is multi-dimensional. In the multi-dimensional case the Fourier series expan-

sion of Wiener process has been used to represent the double integrals by [6], [11]

and [10] but we need to generate many random variables each time therefore it takes

a lot of time to compute and also it is hard to extend to higher order. We will see
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in this study a modified interpretation for the normal random variables generated

in the Taylor expansion. This method will give order one convergence under a non-

degeneracy condition for the diffusion term. In standard methods such as Milstein

we generate the approximations for the Taylor expansion terms separately. In the

coupling method we will generate the approximation for the Taylor expansion as a

combination of random variables. The modification is by replacing the iterated in-

tegrals by different random variables but with a good approximation in distribution.

Then we will obtain a random vector from the linear term which is a good approxima-

tion in distribution to the original Taylor expansion. There have been many studies

using coupling for the numerical solution of Stochastic differential equations. In [12]

Kanagawa investigate the rate of convergence in terms of two probability metrics

between approximate solutions with i.i.d random variables. Rachev and Ruschen-

dorff [8] in volume 2 developed Kanagawa’s method by using the Komlós, Major and

Tusnády theorem in [7]. In [13] Fournier uses the quadratic Vaserstein distance for

the approximation of the Euler scheme and the results of Rio [14] which gives a very

precise rate of convergence for the central limit theorem in Vaserstein distance. Also

Rio in [21] continues his research in [14] for the Vaserstein bound to give precise

bound estimates. Under uniform ellipticity, Alfonsi, Jourdain and Kohatsu-Higa [3]

and [4] have studied the Vaserstein bound for Euler method and they have proved

an O(h(
2

3
−ǫ)) for one-dimensional diffusion process where h is the step-size and then

they generalize the result to SDEs of any dimension with O(h
√

log( 1h )) bound when

the coefficients are time-homogeneous. Cruzeiro, Malliavin and Thalmaier [15] get an

order one method and under the non-degeneracy they construct a modified Milstein

scheme which obtains an order one for the strong approximation. Charlbonneau,

Svyrydov and Tupper [16] investigate the Vaserstein bound [9] by using the weak

convergence and Strassen- Dudley theorem. Convergence of an approximation to a

strong solution on a given probability space was established by Gyöngy and Krylov in

[17] using coupling. Davie in [22] applied the Vaserstein bound to solutions of vector

SDEs and uses the Komlós, Major and Tusnády theorem to get order one approxi-

mation under a non-degeneracy assumption. In this paper we will give the proof of

an order one convergence for Davie [5] method by using Matlab implementation for

a specific SDEs. The proof will be in Lp space using three-dimensional SDEs. The

rest of this paper is organized as follows. Section 2 reviews some results concerning

SDE and introduce Davie [5] method. Section 3 presents the idea of bounds using

two-level coupling. In section 4 we look at and explain the method of the approximate

coupling for general d. In the last section we give numerical example to the show the

convergence behavior for 3-dimensional SDE.
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2. STOCHASTIC DIFFERENTIAL EQUATIONS(SDES)

Definition: let {W (t)}t≥0 be a d -dimensional standard Brownian motion on a prob-

ability space (Ω,F ,P) equipped with a filtration F = (Ft)t≥0, a = a(t , x ) be a

d -dimensional vector function(called drift coefficient) and b = b(t , x ) a d × d -matrix

function(called diffusion coefficient). Stochastic processes X = X (t), where t ∈ [0,T],

can be described by stochastic differential equations

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t). (2.1)

Let the initial condition X(0) = x be an F0-measurable random vector in R
d. An

Ft-adapted stochastic process X = (X(t))t≥0 is called a solution of equation (2.1) if

X(t) = X(0) +

∫ t

0

a(s,X(s))ds+

∫ t

0

b(s,X(s))dW (s), (2.2)

is satisfied.

2.1. STRONG CONVERGENCE FOR SDES

Suppose that a probability space (Ω,F ,P) is given. In this probability space Ω is the

set of continuous functions with the supremum metric on the interval [0, T ], F is the

σ-algebra of Borel sets and P is the Wiener measure. We consider an approximate

solution xh of (2.1) which uses a subdivision of the interval [0, T ] into a finite number

N of subintervals which we assume to be of length h = T
N . Also we assume the

approximate solutions xh is a random variable on Ω. Now we say that the discrete

time approximation xh with the step-size h converges strongly of order γ at time

T = Nh to the solution X(t) if E|xh − X(T )|p ≤ Chγp, h ∈ (0, 1) where the strong

convergence will be in Lp space and X(T ) is the solution to the stochastic differential

equation. C is a positive constant and C independent of h.

Our method will give a strong approximation in the sense of this definition.

2.2. NUMERICAL METHOD FOR APPROXIMATING THE SDES

There are many numerical methods for solving stochastic differential equation, here

we will mention two important schemes. The first one is the Euler-Maruyama scheme

which will give strong order 1
2 and the second one is the Milstein scheme which has

an order one for the strong convergence. Suppose we have the stochastic differential

equation.

dXi(t) = ai(t,X(t))dt+
d

∑

k=1

bik(t,X(t))dWk(t), Xi(0) = X
(0)
i (2.3)
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where i =1,...,d on an interval [0, T ], for a d -dimensional vector X(t), with a d-

dimensional Brownian path W (t). In order to approximate the solution, we assume

[0, T ] is divided into N equal intervals of length h = T/N .

2.2.1. EULER-MARUYAMA SCHEME

The simplest numerical method for approximating the solution of stochastic differ-

ential equations is the stochastic Euler scheme (also called Euler Maruyama scheme)

which utilizes only the first two terms of the Taylor expansion and it attains the strong

convergence γ = 1
2 . Firstly, consider the Euler-Maruyama approximation scheme.

x
(j+1)
i = x

(j)
i + ai(jh, x

(j))h+

d
∑

k=1

bik(jh, x
(j))∆W

(j)
k , (2.4)

where ∆W
(j)
k =Wk((j + 1)h)−Wk(jh) and our numerical approximation to X(jh)

will be denoted x(j).

2.2.2. THE MILSTEIN SCHEME

We shall now introduce the Milstein scheme which gives an order one strong Tay-

lor scheme. We could obtain the Milstein scheme by adding the quadratic terms
∑d

k,l=1 ρikl(jh, x
(j))A

(j)
kl , to Euler scheme which gives the following scheme

x
(j+1)
i = x

(j)
i + ai(jh, x

(j))h+

d
∑

k=1

bik(jh, x
(j))∆W

(j)
k +

d
∑

k,l=1

ρikl(jh, x
(j))A

(j)
kl , (2.5)

where ∆W
(j)
k =Wk((j + 1)h)−Wk(jh),

A
(j)
kl =

∫ (j+1)h

jh
{Wk(t)−Wk(jh)}dWl(t), and ρikl(t, x) =

∑q
m=1 bmk(t, x)

∂bil
∂xm

(t, x).

The implementation of the Euler scheme is easy to do as only needs to generate

the normal distribution for the standard Brownian motion ∆W
(j)
k but it is not easy

to generate the integral A
(j)
kl for the Milstein scheme when we have two or more

dimensional SDEs. We need to mention some facts about the two-level approximation.

2.3. TWO-LEVEL APPROXIMATION

We need to generate the increments ∆W
(j)
k when we approximate the solution to (2.1)

by using Euler or other schemes which we will explain later in this section, therefore

Levy’s construction of the Brownian motion will be used to simulate a sequence of

approximations converge to the solution. That is

∆W
(r,j)
k = ∆W

(r+1,2j)
k +∆W

(r+1,2j+1)
k , (2.6)
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where r ∈ N and ∆W
(r,j)
k =Wk((j + 1)h(r))−Wk(jh

(r)) with h(r) = T
2r .

We will call the two-level approximation in (2.6) the trivial coupling. We could gen-

erate the normal distribution in (2.6) for the increments for a given level r by firstly

generating the increments in the LHS ∆W
(r,j)
k and then conditionally generating the

increments in the RHS. We do the same process for each level r+ 2, r+ 3 and so on.

After that we will get the Brownian path W (t).

2.3.1. EMPIRICAL ESTIMATION OF THE ERROR OF A

NUMERICAL METHOD

Because usually we do not know the solutions of the stochastic differential equation

explicitly therefore we could not directly estimate the mean error E|X(T )−xh| which
is the absolute value of the difference between the approximation solution xh and the

solution X(T ) of an SDE (2.1). Assume the approximate solution xh converges to the

solution X(T ) as we decrease the step-size and go to zero. Then we can estimate the

order of convergence for a particular scheme by repeating R different independent sim-

ulations of sample paths. We will use the following estimator
{

ǫ = 1
RE(

∣

∣x(r) − x̂(r)
∣

∣)
}

for different approximation solutions x(r) and x̂(r) for different range value of h. So

for any numerical method if we have a bound for the error E|xh − xh/2| ≤ C1h
γ then

E|xh/2 − xh/4| ≤ C1(
h
2 )

γ and then E|xh/4 − xh/8| ≤ C1(
h
22 )

γ and so on. Therefore

we will get a geometric series then we will obtain

E|X(T )− xh| ≤
∞
∑

h=0

C1

( h

2k
)γ

=
C1h

γ

1− 2−γ
. (2.7)

So from (2.7) we could estimate the convergence and the constant. If the commuta-

tivity condition for ρikl(t, x) = ρilk(t, x), holds for all x ∈ R
d, t ∈ [0, T ] and all i, k, l

then the Milstein scheme (2.5) reduce to

x
(j+1)
i = x

(j)
i + ai(jh, x

(j))h+
d

∑

k=1

bik(jh, x
(j))∆W

(j)
k +

d
∑

k,l=1

ρikl(jh, x
(j))B

(j)
kl , (2.8)

which only depends on the generation of the Brownian motion ∆W
(j)
k . Scheme (2.8)

will give an order one if d = 1, but if d > 1 will have order 1
2 . As it is described in

Davie’s paper we could do a modification to scheme (2.8) which will give an order

one under a non-degeneracy condition.

2.4. A MODIFICATION TO (2.8) WHICH GIVES ORDER ONE

As it is described in Davie’s paper [5] the interpretation of generating of the normal

distribution will be changed in scheme (2.8) which leads to convergence of order one
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under a non-degeneracy condition. In the implementation of the Milstein scheme we

start by generating the random variables ∆W
(j)
k and A

(j)
kl separately and then we add

these random variables to get the RHS of scheme (2.8). The idea here that we will try

to generate the following Y :=
∑

bik(jh, x
(j))∆W

(j)
k +

∑

ρikl(jh, x
(j))A

(j)
kl , directly.

If we have a scheme

x
(j+1)
i = x

(j)
i + ai(jh, x

(j))h+
∑

bik(jh, x
(j))X

(j)
k

+
∑

ρikl(jh, x
(j))(X

(j)
k X

(j)
l − hδkl), (2.9)

where the incrementX
(j)
k are independentN(0, h) random variables then it is the same

as scheme (2.8) with ∆W
(j)
k replaced by X

(j)
k and we do not assume ∆W

(j)
k = X

(j)
k .

Now we need Zi :=
∑

bik(jh, x
(j))X

(j)
k +

∑

ρikl(jh, x
(j))(X

(j)
k X

(j)
l − hδkl), to be a

good approximation to Yi, in other words how we could find a joint distribution of

random vectors (∆W
(j)
k , A

(j)
kl ) and (X

(j)
k ) so they have the required marginal distri-

bution, with bound E(Yi − Zi)
2 = O(h3). We will explain in the following section

how we can use a coupling to find the required marginal distribution which will give

good bound for the random distribution Yi and Zi. After that we will get an order

one approximation between the two approximate solutions of the SDEs, x(jh) and

x(j) i.e. E(x(jh) − x(j)) = O(h2). We need to mention two facts before we explain

the approximate coupling.

(1) In the implementation we will use the explicit versions for the coefficients from

the Runge-Kutta scheme coefficients(11.1.7) in Kloeden and Platen’s book [6] i.e.

βikl(x) =
bik(Υ

l
n)− bik(x)√
h

where
(

Υl
n = x+ bl

√
h
)

for l = 1, 2, · · · and βikl we will be used an approximation to

ρikl.

Lemma 2.1. Suppose we have the Runge-Kutta scheme coefficients(11.1.7) in Kloe-

den and Platen’s book [6], i.e.

βikl(x) =
bik(Υ

l
n)− bik(x)√
h

with bik(x) twice differentiable with respect to x and Υl
n = x+ bl

√
h for l = 1, 2, · · · .

Moreover the bik(x) and its second derivative are bounded by constant. Then the differ-

ence approximation between βikl(x) and the derivatives term ρikl(x) will be O(h).i.e.

(

∣

∣βikl(x)− ρikl(x)
∣

∣

p
)2/p

≤ Cph (2.10)

where Cp is a constant.



THREE-DIMENSIONAL SDE 285

Proof. see Alnafisah [1]

Lemma 2.2. Let p ∈ P. Then we can find a vector polynomial ψ ∈ Pq such that

∇.(fψ) = fPp.

Proof. see Lemma 1 in [5]

Lemma 2.3. Let n ≤ N and R be positive integers, and for j = 1, · · · , N let

pj , rj ∈ P, all having degree≤ R, and such that pj = rj for j ≤ n. Let η > 0 with

ηR ≤ n and let K > 0. Then we can find C > 0 such that, if ǫ > 0 and we write

µ0 = pfχBdx and ν0 = rfχBdx where p = 1 +
∑N

j=1 ǫ
jpj, r = 1 +

∑N
j=1 ǫ

jrj and

B = {x ∈ R
q : |x| ≤ ǫ−η}, and if µ and ν are probability measures on R

q with
∫

Rq (1 + |x|2)d|µ − µ0|(x) < Kǫ2n+2 and
∫

Rq (1 + |x|2)d|ν − ν0|(x) < Kǫ2n+2, then

W2(µ, ν) < Cǫn+1.

Proof. see Lemma 2 in [5]

3. BOUNDS USING TWO-LEVEL COUPLING

First we consider scheme (2.9) and for the simplicity we will let bik(x) depend only

on x and also the drift term equal zero, so

x
(j+1)
i = x

(j)
i +

∑

bik(x
(j))X

(j)
k +

∑

ρikl(x
(j))(X

(j)
k X

(j)
l − hδkl). (3.1)

Now for the step-size h(r) = T
2r we will have 2rd independent random variables X

(r,j)
k .

Then at two consecutive levels, in other words from level r to level r + 1, r ∈ N we

need to find a coupling between X
(r,j)
k which is N(0, h(r)) and (X

(r+1,2j)
k , X

(r+1,2j+1)
k )

so they are independent of each other and they are N(0, h(r+1)). If we have that x̃
(r,j)
i

is a solution of 3.1 at the level r then for a fix time j we compare x̃
(r,j+1)
k at level r

with x̃
(r+1,2j+2)
k in the level r + 1, we have

x̃
(r,j+1)
i = x̃

(r,j)
i +

d
∑

k=1

bik(x̃
(r,j))X

(r,j)
k

+
1

2

d
∑

k,l=1

ρikl(x̃
(r,j))(X

(r,j)
k X

(r,j)
l − h(r)δkl), (3.2)

and define y as the following

y = x̃
(r+1,2j)
i +

d
∑

k=1

bik(x̃
(r+1,2j))X

(r,j)
k



286 Y. ALNAFISAH

+
1

2

d
∑

k,l=1

ρikl(x̃
(r+1,2j))(X

(r,j)
k X

(r,j)
l − h(r)δkl), (3.3)

also we have

x̃
(r+1,2j+1)
i = x̃

(r+1,2j)
i +

d
∑

k=1

bik(x̃
(r+1,2j))X

(r+1,2j)
k

+
1

2

d
∑

k,l=1

ρikl(x̃
(r+1,2j))(X

(r+1,2j)
k X

(r+1,2j)
l − h(r+1)δkl). (3.4)

x̃
(r+1,2j+2)
i = x̃

(r+1,2j+1)
i +

d
∑

k=1

bik(x̃
(r+1,2j+1))X

(r+1,2j+1)
k

+
1

2

d
∑

k,l=1

ρikl(x̃
(r+1,2j+1))(X

(r+1,2j+1)
k X

(r+1,2j+1)
l − h(r+1)δkl). (3.5)

We should mention that when we write X = O(M) for the random variable X we

mean the Lp bound for it i.e. (E|X |p)1/p ≤ CM . Now, from lemma 2.1 we have

bik(x̃
(r+1,2j+1)) = bik(x̃

(r+1,2j)) + ρikl(x̃
(r+1,2j))(X

(r+1,2j)
k ) +O(h)

and ρikl(x̃
(r+1,2j+1)) = ρikl(x̃

(r+1,2j)) +O(h).

Using these relations in (3.5) and combining it with (3.4) we get.

x̃i
(r+1,2j+2) = x̃i

(r+1,2j) +
d

∑

k=1

bik(x̃i
(r+1,2j))(X

(r+1,2j)
k +X

(r+1,2j+1)
k )

+

d
∑

l,k=1

ρikl(x̃
(r+1,2j))X

(r+1,2j+1)
k X

(r+1,2j)
l

+
1

2

d
∑

l,k=1

ρikl(x̃
(r+1,2j))(X

(r+1,2j)
k X

(r+1,2j)
l

+X
(r+1,2j+1)
k X

(r+1,2j+1)
l − h(r)δkl)

+ λ, (3.6)

where λ = O((h(r))3/2).

Now, let (cij) be the matrix inverse of
(

bik(x̃
(r+1,2j))

)

so that
∑

j cijbik(x̃
(r+1,2j)) =

δik. Then from equation (3.3) and (3.6) if we need the local error y − x̃
(r+1,2j+2)
k =

O((h(r))3/2), we require the coupling to satisfy

X
(r,j)
i = X

(r+1,2j)
i +X

(r+1,2j+1)
i
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+

d
∑

k,l=1

τikl(X
(r+1,2j+1)
k X

(r+1,2j)
l −X

(r+1,2j+1)
l X

(r+1,2j)
k ) +O((h(r))3/2),

where τikl =
1
2

∑

j cijρikl.

Now we will reformulate (??) by a scaling. We fix r write ǫ = (h(r))1/2, X
(r,j)
i =

ǫVi, X
(r+1,2j)
i = ǫYi and X

(r+1,2j+1)
i = ǫZi. Then V1, · · · , Vd are independent and

N(0, 1), while (Y1, · · · , Yd, Z1, · · · , Zd) are independent and N(0, 1/2). Now we need

to find a coupling between a vector (Vi) and (Yi, Zi) so that

Vi = Yi + Zi + ǫ
d

∑

k,l=1

τikl(ZkYl − ZlYk) +O(ǫ2). (3.7)

We need to write Ui = Yi+Zi and U
∗
i = Yi−Zi that gives Ui and U

∗
i are independent

and N(0, 1). We have U∗
l Uk −U∗

kUl = 2(YlZk −ZlYk) so that from equation (3.7) we

obtain

Vi = Ui + ǫ

d
∑

k,l=1

τikl(U
∗
l Uk − U∗

kUl) +O(ǫ2). (3.8)

Therefore, we require a coupling between (V1, · · · , Vd) and (U1, · · · , Ud, U
∗
1 , · · · , U∗

d ),

here all the random variables are N(0, 1), and also (V1, · · · , Vd) are mutually inde-

pendent,

(U1, · · · , Ud, U
∗
1 , · · · , U∗

d ) are also mutually independent, and (3.8) holds.

4. APPROXIMATE COUPLING FOR GENERAL D

In this section we will describe the approximate coupling which satisfies (3.8) with U ,

U∗ having the required distribution but the random variable V has only approximately

a standard normal distribution. Here the error bounds are somewhat less precise but

the estimates can easily be made rigorous. First of all, we will start with a lemma.

Lemma 4.1. Let U = (U1, · · · , Ud) be a random vector with N(0, I) distribution

and let A be a fixed d× d matrix. Let Y = U + ǫAU . Then the density function of Y

satisfies

fY (y) = (2π)−d/2e−|y|2/2{1 + ǫ(ytAy − trA) + ǫ2Ω}+O(ǫ3) (4.1)

where Ω = −(trA)ytAy − ytA2y − 1
2 |Ay|2 + 1

2 (y
tAy)2 + 1

2 (trA)
2 + 1

2 tr(A
2).

Proof. see Davie [5]

We need now to apply the lemma to (3.8). We will use the same definition for U

and U∗ as in (3.8) and define

Yi = Ui +
ǫ

2

d
∑

k,l=1

τjkl(U
∗
l Uk − U∗

kUl) (4.2)
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If we define σikl =
1
2 (τikl − τilk) then we could rewrite (4.2) in the following way

Yi = Ui + ǫ

d
∑

k,l=1

σiklUkU
∗
l (4.3)

Now we need to find V which is close to N(0, I) such that V − U = O(ǫ2). To do

this we first apply the previous lemma to approximate the density function of Y . We

write Y = U + ǫAU where the matrix A = (aik) is given by aik =
∑d

l=1 σiklU
∗
l . Then

the density of Y , conditional on U∗, is given by (4.12) from the previous lemma. Now

we need to find the unconditional density of Y by substituting for A in (4.12) and

taking the expectation with respect to U∗. We will do this for every term separately.

Firstly let

δkl =







1 if k = l

0 if k 6= l

If we have the normal distributions U∗
1 , · · · , U∗

n and let

N1 =

n
∑

l=1

alU
∗
l , N2 =

n
∑

k=1

bkU
∗
k

E(N1N2) = E

n
∑

k,l=1

albkU
∗
l U

∗
k =

n
∑

k=1

akbk

So from equation (4.12) and taking the expectation w.r.t U∗ , we have.

E((trA)ytAy) = E(

d
∑

i,k=1

( d
∑

m=1

amm

)

aikykyi) =

d
∑

i,k=1

d
∑

m,l=1

σmmlσiklykyi (4.4)

E(ytA2y) = E

( d
∑

i,k=1

( d
∑

m=1

aimamkykyi

))

=

d
∑

i,k=1

d
∑

m,l=1

σimlσmklykyi (4.5)

E|Ay|2 = E(ytAtAy) = E

( d
∑

i,k=1

( d
∑

m=1

amiamkykyi

))

=

d
∑

i,k=1

d
∑

m,l=1

σmilσmklykyi

(4.6)

E(ytAy)2 = E

( d
∑

i,j,k,m=1

aikajmykyiymyj

)

=

d
∑

i,j,k,m=1

d
∑

l=1

σiklσjmlykyiymyj (4.7)

E((trA)2) = E

( d
∑

i,k=1

aiiakk

)

=

d
∑

i,k,l=1

σiilσkkl (4.8)
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E(trA2) = E(trAA) = E

( d
∑

i,k=1

aikaki

)

=

d
∑

i,k,l=1

σiklσkil (4.9)

Now from (4.4) to (4.9) the unconditional density of Y satisfies

(2π)−d/2e−|y|2/2

{

1+ǫ2
(

K−
d

∑

i,k=1

θikyiyk+

d
∑

i,j,k,m=1

Ψijkmyiyjykym

)}

+O(ǫ4) (4.10)

Where K = 1
2

∑d
i,k,l=1(σiklσkil + σiilσkkl), θik =

∑d
l,m=1(σimlσmkl + σiklσmml +

1
2σmilσmkl)

and Ψijkm = 1
2

∑d
l=1 σiklσjml. Here there is no ǫ

3 term because the density is invariant

under ǫ→ −ǫ. A correction term needs to be added to the distribution Y to make it

close to the standard normal distribution. We consider an R
d-valued random variable

V given by

Vi = Ui + ǫ

d
∑

k,l=1

σiklUkU
∗
l + ǫ2pi(U) (4.11)

Here we need to choose the p which is an R
d-valued polynomial on R

d. After we add

the correction term to the V then we need to find its density function fV and we will

use the following Lemma.

Lemma 4.2. Let U = (U1, · · · , Ud) be a random vector with N(0, I) distribution

and let A be a fixed d× d matrix. Let Y = U + ǫAU + ǫ2p(U) where p is an R
d-valued

polynomial on R
d. Then the density function of Y satisfies

fY (y) = (2π)−d/2e−|y|2/2{1 + ǫ(ytAy − trA) + ǫ2Ω}+O(ǫ3) (4.12)

Where Ω = −(trA)ytAy− ytA2y− 1
2 |Ay|2 + 1

2 (y
tAy)2 + 1

2 (trA)
2 + 1

2 tr(A
2)+ y.p(y)−

∇.p(y).

Proof. See Alnafisah [1].

So the density function fV satisfies

fV (y) = (2π)−d/2e−|y|2/2
{

1+ ǫ2
(

K− θ(y)+Ψ(y)+ y.p(y)−∇.p(y)
)}

+O(ǫ3) (4.13)

where θ(y) =
∑d

i,k=1 θikyiyk and Ψ(y) =
∑d

i,j,k,m=1 Ψijkmyiyjykym.

From lemma 2.2, the polynomial p could be chosen such that

∇.(fp(y)) = f(Ψ(y)− θ(y) + µ) ⇒ f∇.p(y)− y.p(y)f = f(Ψ(y)− θ(y) + µ)

This gives

∇.p(y)− y.p(y) = Ψ(y)− θ(y) + µ (4.14)
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µ here is a constant. Because fV is a density and its integral over entire space

equals to one then we should have µ = K. Now we will verify that if we have

p = 1
2∇(∇

2−Ψ
4 + θ − Ψ

2 ) then it will satisfy (4.14). We need to find every term

separately. If we have that

F ′ =









∂y1

∂y1

· · · ∂yd

∂y1

...
. . .

...
∂y1

∂yd
· · · ∂yd

∂yd









Θ =









θ11 · · · θ1d
...

. . .
...

θd1 · · · θdd









and y =









y1
...

yd









then

∇(θ(y)) = ∇(

d
∑

i,k=1

θikyiyk)

=

d
∑

i,k=1

θik∇yiyk +
d

∑

i,k=1

θikyi∇yk

= F ′Θy + F ′Θty

= IdΘy + IdΘ
ty

= Θy +Θty (4.15)

On the other hand we have

Ψ(y) =
d

∑

i,j,k,m=1

Ψijkmyiyjykym

=
d

∑

i,j,k,m=1

d
∑

l

σiklσjmlyiyjykym

=
(

d
∑

i,k=1

σik1yiyk
)(

d
∑

j,m=1

σjm1yjym
)

+ · · ·+
(

d
∑

i,k=1

σikdyiyk
)(

d
∑

j,m=1

σjmdyjym
)

=
∣

∣

d
∑

i,k=1

σik1yiyk
∣

∣

2
+ · · ·+

∣

∣

d
∑

i,k=1

σikdyiyk
∣

∣

2

and

∇(Ψ(y)) = ∇
(∣

∣

d
∑

i,k=1

σik1yiyk
∣

∣

2
+ · · ·+

∣

∣

d
∑

i,k=1

σikdyiyk
∣

∣

2)
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Now let σ1(y) =
∑d

i,k=1 σik1yiyk, · · · , σd(y) =
∑d

i,k=1 σikdyiyk

and A1 = σik1, · · · ,Ad = σikd Then

∇(Ψ(y)) = ∇(σ1(y)
2 + · · ·+ σd(y)

2)

= ∇σ1(y)2 + · · ·+∇σd(y)2

= 2σ1(y)∇σ1(y) + · · ·+ 2σd(y)∇σd(y)
= 2σ1(y)(A1y +At

1y) + · · ·+ 2σd(y)(Ady +At
dy)

= 2σ1(y)B1 + · · ·+ 2σd(y)Bd

Where B1 = (A1y +At
1y), · · · , Bd = (Ady +At

dy)

∇2(Ψ(y)) = ∇(2σ1(y)B1 + · · ·+ 2σd(y)Bd)

= 2∇σ1(y)B1 + 2σ1(y)∇B1 + · · ·+ 2∇σd(y)Bd + 2σd(y)∇Bd

= 2(A1y + At
1y)

tB1 + 4σ1(y)(tr(A1)) + · · ·+ 2(Ady +At
dy)

tBd

+ 4σd(y)(tr(Ad))

= 2yt
[

At
1A1 +A2

1 + 2A1(tr(A1)) + (At
1)

2 +A1A
t
1

]

y + · · ·
+ 2yt

[

At
dAd +A2

d + 2Ad(tr(Ad)) + (At
d)

2 +AdA
t
d

]

y

= 2ytE1y + · · ·+ 2ytEdy

= 2yt(E1 + · · ·+ Ed)y

= 2ytEy

where E1 = At
1A1 +A2

1 + 2A1(tr(A1)) + (At
1)

2 +A1A
t
1,

Ed = At
dAd +A2

d + 2Ad(tr(Ad)) + (At
d)

2 +AdA
t
d

and E = E1 + · · ·+ Ed

Finally we need to find ∇[∇2(Ψ(y))]

∇[∇2(Ψ(y))] = ∇
(

2ytEy
)

= 2(Ey + Ety)

So from (4.14) we have

∇.p(y)− y.p(y) = −E +
(Θ + Θt)

2
− ytEy − yt[−Ey + (Θ +Θt)y

2

− (σ1(y)B1 + · · ·+ σd(y)Bd)]

= −E +
(Θ + Θt)

2
− ytEy + ytEy − yt(Θ + Θt)y

2

+ (σ1(y)
2 + · · ·+ σd(y)

2)

= Ψ(y)− θ(y) + µ (4.16)
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After we find the derivation of p we could see the ǫ2 term will equal zero, also fV

is an even function of ǫ, therefore we will not have an ǫ3 term in its expansion, so

fV (y) = (2π)−d/2e−|y|2/2 +O(ǫ4). We also see that this V satisfies (3.8).

Now we need to expand the density fV further as

fV (y) = φ(y)(1 + q(y)) +O(ǫ8)

where φ(y) is the density of standard normal distribution in R
d. i.e.

φ(y) = (2π)−d/2e−|y|2/2

and q is a polynomial in ǫ and y and its expansion has ǫ4 and ǫ6 terms but the

dominant term will be of order ǫ4, i.e. it has O(ǫ4). Then from lemma 2.3 we can

deduce that the distance (W2) between the random variables V and Ṽ = N(0, I) will

be of O(ǫ4). This means Ṽ will be coupled to V so that

E|V − Ṽ |2 = O(ǫ8) (4.17)

The purpose of the following discussion is to show how we could use the empirical

estimate as in section 2.3.1 with the approximate coupling to get an estimate for

the error using the coupling Ṽ and hence we get an empirical upper bound for the

Vaserstein distance between the approximate solutions at two levels.

So if we need to generate coupled approximate solutions x̃(r,j) and x̃(r+1,2j) at

two different levels r and r + 1 then we could use the above definitions of V, U, U∗.

Because V does not have the exact normal distribution N(0, I), therefore we will not

get the true implementation for x̃(r,j) in (3.1). We could get the true implementation

of (3.1) which we will call x̄(r,j) by substituting V by Ṽ , but we do not have a means

of generating it jointly with the level r + 1 solution, therefore we use x̃(r,j) as an

approximation. As we have done before, we have that the bound between x̃(r,j) and

x̃(r+1,2j) is O(h), and from (4.17) we obtain the bound x̄(r,j) − x̃(r,j) = O(h2).

Now we need to estimate the error as the following. If we have that N is the total

number of steps at level r, we need to estimate the following E|x̄(r,N) − x̄(r+1,2N)|
where x̄(r,N) is the true implementation of (3.1). But as we mentioned before that we

could estimate empirically E|x̃(r,N) − x̃(r+1,2N)| by using the approximate coupling

method. After that we could get O(h2) bound between E|x̄(r,N) − x̄(r+1,2N)| and
E|x̃(r,N)− x̃(r+1,2N)|. As we expect E|x̄(r,N)− x̄(r+1,2N)| to be of order h, so the error

h2 between them should be negligible for small h, hence the approximate method is

effective for empirical estimation.

In following section we will show the numerical results of the approximate coupling

for the scheme (2.9) which support the theoretical results. I would like to mention that

the following implementation will be for 3-dimensional stochastic differential equation

but the codes could be applied to d-dimensional SDEs.
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Theorem 4.1. Assume the matrix bik(x) is invertible and twice differentiable with

respect to x. Moreover the bik(x) and its second derivative are bounded by constant.

Also we assume the boundedness on the inverse of the matrix bik(x). Then we obtain

the following

(E|x̃(r+1,2j)
i − x̃

(r,j)
i |p)2/p ≤ k2h

2eTL (4.18)

where x̃
(r,j)
i and x̃

(r+1,2j)
i are define the same in (3.2), (3.4) and (3.5) where the

explanation of the generation of the random variables X has been shown in the coupling

summary.

Proof. See Alnafisah [1].

5. THE IMPLEMENTATION OF APPROXIMATE COUPLING IN

THREE-DIMENSIONAL SDE WITH INVERTIBLE DIFFUSION

First of all, we have the 3-dimensional SDE, which is invertible.

dX1(t) = −(sin(X1(t)))
2dW1 +

1

1 + (X2(t))2
dW2 +

1

1 + (X2(t))2
dW3,

dX2(t) =
1

1 + (X2(t))2
dW1 + (cos(X1(t)))

2dW3,

dX3(t) = (cos(X3(t)))
2dW1 +

1

1 + (X1(t))2
dW2,

for 0 ≤ t ≤ 1, with X1(0) = 2 ,X2(0) = 0 and X3(0) = 1

(5.1)

where W1(t), W2(t) and W3(t) are independent standard Brownian motion.

To apply a numerical method to this SDE we need to simulate solutions (for the

same Brownian path) simultaneously using two different step sizes (h and h/2).

The Matlab implementation for this SDE using the approximate coupling, which

will show us the result of the absolute value of the difference between two solutions

with step size h and h/2.

To construct this experiment, we will decrease the step size (h) every time when

we calculate the error and examine the convergence order of the approximate coupling

method. We will repeat this with different step size using (for example, R = 1000)

independent simulations. Then the order of convergence of this method between two

approximate solutions should be 1.

For the SDE we use the Matlab code to estimates the absolute error ǫ = 1
R

∑R
i=1 |x

(i)
h −

x
(i)
h/2|, for the approximation solution xh where each simulation is for the same Brow-

nian path. We will run the Matlab code with different number of steps (50, 100, 200,

400, 800, 1600) over a very large number of paths.
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step-size error(ǫ)

0.02 0.0225

0.01 0.0117

0.005 0.0059

0.00025 0.0028

0.000125 0.001

Table 1: The error results for the Approx. coupling in 3-d.

Figure 1: plotting for the convergence of the Apprx. coupling in 3-d

The table (1) and the plotting in Figure (1) show the implementation of the

approximation solutions of the previous 3-dimensional SDEs with different number of

steps (50, 100, 200, 400, 800, 1600). Running the code for 1000 simulations gives a

value for its estimator ǫ equal to 0.0225 with the step-size 0.02 i.e.

ǫ =
1

1000

1000
∑

i=1

|x(i)h − x
(i)
h/2| = 0.0225

and 0.0117 with step-size 0.01 and so on. This means when we increase the number

of steps which each time gives a smaller step-size then the estimate error ǫ will give

O(h) as it appears in the results in table (1). Also the Figure (1) is a plot of the

log of the estimator ǫ i.e. log ǫ against the log of step-size h i.e. log(h) which has a

slope of 0.98725 which again indicates a strong convergence of O(h) for the stochastic

differential equation (5.1).

Therefore from these computational results we could see that we have obtained

good agreement between the theoretical bound in [1] and the implementation results.
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