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ABSTRACT: In this paper we study the one–sided Hausdorff approximation of

the shifted Heaviside step function by a class of the Zubair–family of cumulative dis-

tribution with baseline Ghosh–Bourguignon’s extended Burr XII c.d.f. The estimates

of the value of the best Hausdorff approximation obtained in this article can be used

in practice as one possible additional criterion in ”saturation” study.

We will illustrate the advances of this new model for approximation and modelling

of data for Witty worm for entire world and for USA [1] (see, also [16]) and ”cancer

data” (for some details see, [19], [20].

Numerical examples, illustrating our results are presented using programming en-

vironment CAS Mathematica.
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1. INTRODUCTION

In [2], a new family of lifetime distributions, called the Zubair–G family of distribu-

tions is introduces.

The new family is defined by the following cumulative distribution function (cdf)

F (t;λ) =
eλG

2(t) − 1

eλ − 1
, (1)

where λ > 0 and G(t) is the (cdf) of the baseline model.

Some comments on a Zubair-G Family of cumulative lifetime distributions with

baseline Weibull, Lomax and Burr (cdf) can be found in [3], [17]–[18].

In [4] Ghosh and Bourguignon proposed the following c.d.f. (so–called extended

Bur XII c.d.f.):

G(t) = 1−
2

1 + (1 + tc)
µ ; c > 0, µ > 0. (2)

We consider the following class of the Zubair–family with baseline Ghosh–Bourgui-

gnon’s extended Burr XII cumulative sigmoid:

M(t) =
e
λ(1− 2

1+(1+tc)µ )
2

− 1

eλ − 1
, (3)

with
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; M(t0) =
1

2
. (4)

In this note we study the Hausdorff approximation of the shifted Heaviside step

function

ht0(t) =























0, if t < t0,

[0, 1], if t = t0,

1, if t > t0

by this family.

Definition 1. [5] The Hausdorff distance (the H–distance) ρ(f, g) between two

interval functions f, g on Ω ⊆ R, is the distance between their completed graphs F (f)

and F (g) considered as closed subsets of Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||},

wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB, xB) in R
2 is ||A−B|| =

max(|tA − tB |, |xA − xB|).
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As an illustrative example we consider the fitting the new model against data for

Witty worm for entire world and for USA [1].

2. MAIN RESULTS

The one–sided Hausdorff distance d between the function ht0(t) and the sigmoid -

((3)–(4)) satisfies the relation

M(t0 + d) = 1− d. (5)

The following theorem gives upper and lower bounds for d

Theorem. Let

p = − 1
2 ,

q = 1 +
cµλ(1+eλ)
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,

r = 2.1q.

(6)

For the one–sided Hausdorff distance d between ht0(t) and the sigmoid ((3)–(4))

the following inequalities hold for: q >
e1.05

2.1

dl =
1

r
< d <

ln r

r
= dr. (7)

Proof. Let us examine the function:

F (d) = M(t0 + d)− 1 + d. (8)

From F ′(d) > 0 we conclude that function F is increasing.

Consider the function

G(d) = p+ qd. (9)

From Taylor expansion we obtain G(d)− F (d) = O(d2).

Hence G(d) approximates F (d) with d → 0 as O(d2) (see Fig. 1).

In addition G′(d) > 0.

Further, for q >
e1.05

2.1
we have G(dl) < 0 and G(dr) > 0.

This completes the proof of the theorem.
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Figure 1: The functions F (d) and G(d) for µ = 4; c = 5; λ = 0.05.

3. NUMERICAL EXAMPLES

The model ((3)–(4)) for µ = 4; c = 5; λ = 0.05, t0 = 0.890723 is visualized on Fig. 2.

From the nonlinear equation (5) and inequalities (7) we have: d = 0.151979,

dl = 0.124188, dr = 0.259051.

The model ((3)–(4)) for µ = 8; c = 10; λ = 0.02, t0 = 0.869714 is visualized on

Fig. 3.

From the nonlinear equation (5) and inequalities (7) we have: d = 0.0830442,

dl = 0.0640181, dr = 0.175959.

The model ((3)–(4)) for µ = 10; c = 20; λ = 0.01, t0 = 0.921083 is visualized on

Fig. 4.

From the nonlinear equation (5) and inequalities (7) we have: d = 0.0493593,

dl = 0.0354992, dr = 0.118505.

From the above examples, it can be seen that the proven estimates (see Theorem)

for the value of the Hausdorff approximation is reliable when assessing the important

characteristic - ”saturation”.

4. SOME APPLICATIONS

1. Here we will give an application of the new cumulative sigmoid when provide anal-

ysis of the following data which we photographed for the situation that was happen on
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Figure 2: The model ((3)–(4)) for µ = 4; c = 5; λ = 0.05, t0 = 0.890723;

H–distance d = 0.151979, dl = 0.124188, dr = 0.259051.

Figure 3: The model ((3)–(4)) for µ = 8; c = 10; λ = 0.02, t0 = 0.869714;

H–distance d = 0.0830442, dl = 0.0640181, dr = 0.175959.

March 19, 2004, at approximately 8:45 p.m. Pacific Standard Time (PST), [1] where

the first coordinate is time with step 5 minutes and second coordinate is number of

infected hosts

data World = {{0.1,150},{5,869},{10,2141},{15,3637},{20,5312},

{26,6602},{31,7562},{36,8340},{41,8941},{46,9389},{51,9734},

{56,10060},{61,10349},{66,10586},{71,10800},{76,11169},

{86,11362},{91,11532},{96,11684},{101,11823},{106,11972},

{111,12118},{116,12256},{121,12372}}

and

data USA = {{0.1,150},{5,576},{10,1236},{15,1963},{20,2973},

{26,3488},{31,3953},{36,4343},{41,4630},{46,4825},{51,4986},
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Figure 4: The model ((3)–(4)) for µ = 10; c = 20; λ = 0.01, t0 = 0.921083;

H–distance d = 0.0493593, dl = 0.0354992, dr = 0.118505.

{56,5153},{61,5280},{66,5380},{71,5468},{76,5590},{86,5706},

{91,5769},{96,5831},{101,5877},{106,5939},{111,5989},

{116,6033},{121,6063}}.

From data analysis it follows that it is worthy to use the following model:

M(t) = ω

(

e
λ(1− 2

1+(1+tc)µ )
2

− 1

eλ − 1

)

. (10)

When solving this task in programming environment Mathematica we receive the

results (see, Fig. 5 and Fig. 6 respectively for entire World and USA spreading of

Witty worm):

- for entire World spreading parameters are

ω = 12372; c = 0.425265;µ = 4.15722;λ = 116.886,

and

- for USA spreading parameters are

ω = 6063; c = 0.450205;µ= 3.96908;λ = 95.4303.

2. Here we an application of the new cumulative sigmoid for analysis of the

following ”cancer data” (for some details see, [19], [20].

Consider the model:
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Figure 5: Epidemic data for entire world of Witty worm fitted with model

(10)

Figure 6: Epidemic data for USA of Witty worm fitted with with model (10)

M(t) = ω

(

e
λ(1− 2

1+(1+tc)µ )
2

− 1

eλ − 1

)

. (11)
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days 4 7 10 12 14 17 19 21

R(t) 0.415 0.794 1.001 1.102 1.192 1.22 1.241 1.3

Table 1: The ”cancer data” [19], [20]

Figure 7: The model M(t) based on the ”cancer data”.

The model (11) based on the data from Table 1 for the estimated parameters:

ω = 1.43404; c = 1.10616; µ = 1.52777; λ = 4.93163

is plotted on Fig. 7.

For the predictive power (PP) criterion:

PP =
∑

i

(

M(ti)− yi

yi

)2

we find PP = 0.00110303.

From the conducted experiments (see, also Fig. 7 and Fig. 8) it can be concluded

that the examined model can be successfully used in the field of Population dynamics.

For some approximation, computational and modelling aspects, see [6]–[12].

Some software reliability models, can be found in [13]–[15], [23]–[33].
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Figure 8: Numerical solution of the inhibition initial value problem and initial

data–points (see Antonov, Nenov and Tsvetkov [20]).

For some specific properties of the solutions of impulse differential equations with

applications to tumor growth theory, see [21], [22].
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