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ABSTRACT: In this paper we study the one–sided Hausdorff approximation of

the shifted Heaviside step function by a family of Odd Burr III Weibull (ODBW)

cumulative sigmoid. The estimates of the value of the best Hausdorff approximation

obtained in this article can be used in practice as one possible additional criterion in

”saturation” study. Application for the approximating cdf of the number of Bitcoin

received per address [17] is also discussed.

Numerical examples, illustrating our results are presented using programming en-

vironment CAS Mathematica.
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1. INTRODUCTION

The Weibull distribution has been widely used in survival and reliability analyses.

Some modifications, properties and applications of Weibull and Weibull–R families

of distributions can be found in [6]–[15].
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The Burr III distribution is well known and widely used in many problems related

to forestry, weather forecasting, mechanical factors, reliability quality control, risk

analysis, consumer prices and many other areas of research [1]–[5].

In [5], the authors proposed the following Odd Burr III Weibull (ODBW) cumu-

lative sigmoid:
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where t > 0, c > 0, k > 0, α > 0, β > 0.

Definition 1. The shifted Heaviside step function is defined by

ht0(t) =























0, if t < t0,

[0, 1], if t = t0,

1, if t > t0

Definition 2.The Hausdorff distance [16] (the H–distance) ρ(f, g) between two in-

terval functions f, g on Ω ⊆ R, is the distance between their completed graphs F (f)

and F (g) considered as closed subsets of Ω× R.

More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||},

wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB, xB) in R
2 is ||A−B|| =

max(|tA − tB |, |xA − xB|).

We study the Hausdorff approximation [16] of the shifted Heaviside step function

by the family of type (1).

2. MAIN RESULTS

We consider the following class of this family:
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with

t0 = β
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and M(t0) =
1
2 .

The one–sided Hausdorff distance d between the function ht0(t) and the sigmoid

- (2)–(3) satisfies the relation

M(t0 + d) = 1− d. (4)

The following theorem gives upper and lower bounds for d

Theorem. Let
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(5)

For the one–sided Hausdorff distance d between ht0(t) and the sigmoid (2)–(3) the

following inequalities hold for q >
e1.05

2.1
:

dl =
1

r
< d <

ln r

r
= dr. (6)

Proof. Let us examine the function:

F (d) = M(t0 + d)− 1 + d. (7)

From F ′(d) > 0 we conclude that function F is increasing.

Consider the function

G(d) = p+ qd. (8)
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Figure 1: The functions F (d) and G(d) for β = 0.1; α = 1.5; c = 0.2; k = 10.

From Taylor expansion we obtain G(d)− F (d) = O(d2).

Hence G(d) approximates F (d) with d → 0 as O(d2) (see Fig. 1).

In addition G′(d) > 0.

Further, for q >
e1.05

2.1
we have G(dl) < 0 and G(dr) > 0.

This completes the proof of the theorem.

3. NUMERICAL EXAMPLES

The model (2)–(3) for β = 0.1; α = 1.5; c = 0.2; k = 10, t0 = 0.557721 is visualized

on Fig. 2.

From the nonlinear equation (4) and inequalities (6) we have: d = 0.173242,

dl = 0.141208, dr = 0.276418.

The model (2)–(3)) for β = 0.01; α = 1.4; c = 0.1; k = 30, t0 = 0.133295 is

visualized on Fig. 3.

From the nonlinear equation (4) and inequalities (6) we have: d = 0.0578306,

dl = 0.032805, dr = 0.1121.
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Figure 2: The model (2)–(3)) for β = 0.1; α = 1.5; c = 0.2; k = 10, t0 =

0.557721; H–distance d = 0.173242, dl = 0.141208, dr = 0.276418.

Figure 3: The model (2)–(3)) for β = 0.01; α = 1.4; c = 0.1; k = 30,

t0 = 0.133295; H–distance d = 0.0578306, dl = 0.032805, dr = 0.1121.

From the above examples, it can be seen that the proven estimates (see Theorem)

for the value of the Hausdorff approximation is reliable when assessing the important

characteristic - ”saturation”.
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Figure 4: CDF of Bitcoin received (in ransoms) per address in CCL [17].

4. APPROXIMATING CDF OF THE NUMBER OF BITCOIN

RECEIVED PER ADDRESS

We consider the following data (see, [17]:

data CDF of Bitcoin received (inransoms) per address in CCL

:= {{1, 0.0857}, {2, 0.1238}, {3, 0.6571}, {4, 0.6854}, {5, 0.8381},

{6, 0.8476}, {7, 0.8810}, {8, 0.9095}, {9, 0.9143}, {10, 0.9333},

{12, 0.9429}, {14, 0.9571}, {18, 0.9667}, {20, 0.9762}, {23, 0.9810},

{27, 0.9857}, {40, 0.9905}, {46, 0.9952}, {59, 0.9981}}.

Fig. 4 show cdf of the number of Bitcoin received per address respectively [17].

After that using the model M(t) for β = 0.12134, α = 1.14562, c = 0.0479418 and

k = 5.16358 we obtain the fitted model (see, Fig. 5).

The proposed model can be successfully used to approximating data from Popu-

lation Dynamic, Biostatistics, Debugging Theory and Computer Viruses Propagation

Theory.

For some approximation, computational and modelling aspects, see [18]–[44].
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Figure 5: The fitted model M(t).
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