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ABSTRACT: In this paper we prove upper and lower estimates for the one–sided

Hausdorff approximation of the Heaviside step–function ht0(t) by means of a modified

inverse Rayleigh cumulative sigmoid (MIRCS).

Some applications of the presented cumulative sigmoid for analysis of the ”cancer

data” [3]–[4] and for approximating cdf of the number of Bitcoin received per ad-

dress [5] are considered. We analyze the ”data on the development of the Drosophila

melanogaster population”, published by biologist Raymond Pearl in 1920 (see, also

[6]).

Numerical examples, illustrating our results are given.
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1. INTRODUCTION

In a series of papers, we have explored the interesting task of approximating the

Heaviside function h(t) with some logistic functions [7]–[26].

The task is important in the treatment of questions related to the study of the

”supersaturation” - the object of the research in various fields.

In this paper we prove upper and lower estimates for the one–sided Hausdorff

approximation of the Heaviside step–function ht0(t) by means of a new modified

inverse Rayleigh cumulative sigmoid (MIRCS).

The proposed model can be successfully used to approximating data from Popu-

lation Dynamics and Computer Viruses Propagation Theory.

2. PRELIMINARIES

Definition 1. The shifted Heaviside step function is defined by

ht0(t) =











0, if t < t0,

[0, 1], if t = t0,

1, if t > t0.

(1)

Definition 2. [2] The Hausdorff distance (the H–distance) ρ(f, g) between two

interval functions f, g on Ω ⊆ R, is the distance between their completed graphs F (f)

and F (g) considered as closed subsets of Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||}, (2)

wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB, xB) in R
2 is ||A−B|| =

max(|tA − tB |, |xA − xB|).

Definition 3. The modified inverse Rayleigh cumulative sigmoid (MIRCS) is defined

by [1]:

M(t) = e−
α

t
−θ( 1

t
)2 (3)

where α > 0 and θ > 0.
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3. MAIN RESULTS

3.1. APPROXIMATION RESULTS

Let

t0 =
2θ

−α+
√
α2 + 4θ ln 2

. (4)

Evidently, for the median we have M(t0) =
1
2 .

It is important to study the characteristic - ”supersaturation” of the sigmoid ((3)–

(4)) to the horizontal asymptote.

In this Section we prove upper and lower estimates for the one–sided Hausdorff

approximation of the Heaviside step–function ht0(t) by means of families (3)–(4).

The one–sided Hausdorff distance d satisfies the relation

M(t0 + d) = 1− d. (5)

The following theorem gives upper and lower bounds for d

Theorem 1. Let

p =− 1

2
,

q =1 +
1

2t20

(

α+
2θ

t0

)

γ =2.1q.

(6)

Let γ > e1.05. For the one–sided Hausdorff distance d between ht0(t) and the

sigmoid (3)–(4) the following inequalities hold:

dl =
1

γ
< d <

ln γ

γ
= dr. (7)

Proof. Let us examine the function:

F (d) = M(t0 + d)− 1 + d. (8)

From F ′(d) > 0 we conclude that function F is increasing.

Consider the function

G(d) = p+ qd. (9)

From Taylor expansion we obtain G(d)− F (d) = O(d2).

Hence G(d) approximates F (d) with d → 0 as O(d2) (see Fig. 1).

In addition G′(d) > 0 and the function G is also increasing.
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Figure 1: The functions F (d) and G(d) for α = 0.005; θ = 0.001.

Figure 2: The sigmoid (3)–(4) for α = 0.05; θ = 0.01; t0 = 0.161478; Haus-

dorff distance d = 0.195984; dl = 0.10988; dr = 0.242655.

Further, for γ > e1.05 we have

G(dl) < 0; G(dr) > 0.

This completes the proof of the theorem.

Approximations of the ht∗(t) by model (3)–(4) for various k and p are visualized

on Fig. 2–Fig. 3.

From the graphic it can be seen that the ”saturation” is faster.
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Figure 3: The sigmoid (3)–(4) for α = 0.005; θ = 0.001; t0 = 0.0417604;

Hausdorff distance d = 0.090549; dl = 0.0294588; dr = 0.103835.

4. SOME APPLICATIONS

The proposed model can be successfully used to approximating data from Popula-

tion Dynamic, Biostatistics, Debugging Theory and Computer Viruses Propagation

Theory.

4.1. APPROXIMATING CDF OF THE NUMBER OF BITCOIN

RECEIVED PER ADDRESS

We consider the following data (see, [5]:

data CDF of Bitcoin received (inransoms) per address in CCL

:= {{1, 0.0857}, {2, 0.1238}, {3, 0.6571}, {4, 0.6854}, {5, 0.8381},
{6, 0.8476}, {7, 0.8810}, {8, 0.9095}, {9, 0.9143}, {10, 0.9333},
{12, 0.9429}, {14, 0.9571}, {18, 0.9667}, {20, 0.9762}, {23, 0.9810},
{27, 0.9857}, {40, 0.9905}, {46, 0.9952}, {59, 0.9981}}.

Fig. 4 show cdf of the number of Bitcoin received per address respectively [5].

After that using the model

M(t) = ωe−
α

t
−θ( 1

t
)2

for ω = 0.972975, α = −0.387164 and θ = 6.5794 we obtain the fitted model (see,

Fig. 5).
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Figure 4: CDF of Bitcoin received (in ransoms) per address in CCL [5].

Figure 5: The fitted model M(t).

4.2. APPLICATION OF THE NEW CUMULATIVE SIGMOID FOR

ANALYSIS OF THE ”CANCER DATA”

.

We will illustrate the advances of the modified inverse Rayleigh cumulative sigmoid

for approximation and modelling of ”cancer data” (for some details see, [3]–[4]).

days 4 7 10 12 14 17 19 21

R(t) 0.415 0.794 1.001 1.102 1.192 1.22 1.241 1.3
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Figure 6: The model M(t) based on the ”cancer data”.

Table 1: The ”cancer data” [3]–[4]

The model M(t) based on the data from Table 1 for the estimated parameters:

ω = 1.555; α = 3.60844; θ = 6.93094

is plotted on Fig. 6.

4.3. APPROXIMATING THE ”DATA ON THE DEVELOPMENT OF

THE DROSOPHILA MELANOGASTER POPULATION”

We analyze the ”data on the development of the Drosophila melanogaster population”,

published by biologist Raymond Pearl in 1920 (see, also [6]).

We consider the following data:

data Pearl

:= {{9, 39}, {12, 105}, {15, 152}, {18, 225}, {21, 390}, {25, 547},
{29, 618}, {33, 791}, {36, 877}, {39, 938}}.

After that using the model M(t) for ω = 3479.18, α = 53.2571 and θ = −111.646

we obtain the fitted model (see, Fig. 7).
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Figure 7: The fitted model M(t).

5. CONCLUSION

In this paper we prove upper and lower estimates for the one–sided Hausdorff approx-

imation of the Heaviside step–function ht0(t) by means of a modified inverse Rayleigh

cumulative sigmoid (MIRCS).

Some applications of the presented cumulative sigmoid for analysis of the: ”cancer

data” [3]–[4], ”data for approximating cdf of the number of Bitcoin received per

address” [5] and ”data on the development of the Drosophila melanogaster population”

[6] are considered.

We propose a software module within the programming environment CAS Math-

ematica for the analysis of the considered family of functions.

The module offers the following possibilities:

• calculation of the H-distance between the ht0 and the function M(t);

• software tools for animation and visualization.

Finally, we will point out that when the data accepted in the literature as basis

are approximated when compare existing and new models the results obtained with

the model in this article are satisfactory.
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