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ABSTRACT: In this article, following Kertesz, Dombi and Benyi’s ideas [1], we

define a new parametric family of sigmoidal functions that could possibly be used by

specialists to generate a new class of fuzzy operators. In particular, we will study the

function

M(t) =
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ν
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)2
1−t
t

)λ

and we prove upper and lower estimates for the one–sided Hausdorff approximation

of the Heaviside step–function ht∗(t) by means of this new family.

Similar results are also obtained for the sigmoidal function class proposed in [1].

The estimates can be used in practice as one possible additional criterion in ”sat-

uration” study.

Numerical examples using CAS Mathematica, illustrating our results are given.
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1. INTRODUCTION

The Pliant system is a type of fuzzy theory that is similar to a fuzzy system [3]. In

these systems a so-called distending function, which represents a soft inequality are
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used [1]. In this system we usually have a generator function. Using this function

it can be created aggregation operator, conjunctive operator or disjunctive operator

which are widely used in area of cloud computing.

For more details see [1]–[5].

Definition 1. The operators of the Pliant system are [1]–[4]:
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where ν ∈ [0, 1].

Definition 2. Kertesz, Dombi and Benyi [1] defined the following ”Kappa” function:

κλ
ν (x) =

1
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1−x
x

)λ
(5)

and the following aggregation operator:

aν,ν0(x) =
1
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. (6)

For other results, see [2]–[4].

Definition 3. The shifted Heaviside step function is defined by

ht∗(t) =



















0, if t < t∗,

[0, 1], if t = t∗,

1, if t > t∗.

(7)
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Definition 4. [6] The Hausdorff distance (the H–distance) ρ(f, g) between two

interval functions f, g on Ω ⊆ R, is the distance between their completed graphs F (f)

and F (g) considered as closed subsets of Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||}, (8)

wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB, xB) in R
2 is ||A−B|| =

max(|tA − tB |, |xA − xB|).

Definition 5. Combining parts of constructions of (4) and (5) we define a new

parametric family of sigmoidal function for λ > 0, ν ∈ [0, 1] and t ∈ [0, 1)

M(t) =
1

1 +

(

(

ν
1−ν

)2
1−t
t

)λ
. (9)

2. MAIN RESULTS

In this Section we prove upper and lower estimates for the one–sided Hausdorff ap-

proximation of the Heaviside step–function ht∗(t) by means of families (9).

Let

t∗ =
1

(

1−ν
ν

)2
+ 1

.

Evidently, for the ”median” we have M(t∗) = 1
2 .

The one–sided Hausdorff distance d satisfies the relation

M(t∗ + d) = 1− d. (10)

The following theorem gives upper and lower bounds for d

Theorem 1. Let
p = − 1

2 ,

q = 1 + λν2

4(1−ν)2

(

1 + (1−ν)2

ν2

)2

γ = 2.1q.

(11)

Let γ > e1.05. For the one–sided Hausdorff distance d between ht∗(t) and the

function (9) the following inequalities hold:

dl =
1

γ
< d <

ln γ

γ
= dr. (12)
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Figure 1: The functions F (d) and G(d) for λ = 40; ν = 0.4.

Proof. Let us examine the function:

F (d) =
1

1 +

(

(

ν
1−ν

)2
1−(t∗+d)

t∗+d

)λ
− 1 + d. (13)

From F ′(d) > 0 we conclude that function F is increasing.

Consider the function

G(d) = p+ qd. (14)

From Taylor expansion we obtain G(d)− F (d) = O(d2).

Hence G(d) approximates F (d) with d → 0 as O(d2) (see Fig. 1).

In addition G′(d) > 0 and the function G is also increasing.

Further, for γ > e1.05 we have

G(dl) < 0; G(dr) > 0.

This completes the proof of the theorem.

Approximations of the ht∗(t) by model (9) for various λ and ν are visualized on

Fig. 2–Fig. 3.

Some computational examples using relations (10) and (12) are presented in Table

1.

For example, the aggregation operator A(x1, x2) is visualized on Fig. 4.
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Figure 2: The model (9) for λ = 10; ν = 0.3; t∗ = 0.155172; Hausdorff

distance d = 0.044549; dl = 0.0237261; dr = 0.0887637.

Figure 3: The model (9) for λ = 40; ν = 0.4; t∗ = 0.307692; Hausdorff

distance d = 0.0208654; dl = 0.00993213; dr = 0.0458068.

Remark. We will restart the κλ
ν (t) function (5):

κλ
ν (t) =

1

1 +
(

ν
1−ν

1−t
t

)λ
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λ ν dl H − distance dr

10 0.3 0.0237261 0.044549 0.0887637

40 0.4 0.00993213 0.0208654 0.0458068

60 0.5 0.0078064 0.0169195 0.037883

80 0.65 0.00411295 0.00987668 0.022595

100 0.75 0.00170814 0.00471499 0.0108848

130 0.8 0.000809805 0.00249939 0.00576477

350 0.8 0.000301106 0.0010722 0.00244139

Table 1: Bounds for d computed by (10) and (12) for various λ and ν

Figure 4: The aggregation operator A(x1, x2)

Evidently κλ
ν (ν) =

1
2 .

The following theorem is valid

Theorem 2. Let

α = − 1
2 ,

β = 1 + λ
4ν(1−ν)

δ = 2.1β.

(15)

Let δ > e1.05. For the one–sided Hausdorff distance d between the Heaviside function
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hν(t) and the function (5) the following inequalities hold:

dl =
1

δ
< d <

ln δ

δ
= dr. (16)

The proof follows the ideas given in this paper and will be omitted.

The operators of the Pliant systems (such as (9)) are used for reducing the energy

consumption of cloud datacenters and for further research we let the word to the

specialists in this area.

3. CONCLUSIONS

In this paper we study a new parametric family of sigmoidal functions with applica-

tions to Fuzzy Sets Theory.

We prove upper and lower estimates for the one–sided Hausdorff approximation

of the shifted Heaviside function ht∗(t) by means of this new family.

The estimates can be used in practice as one possible additional criterion in ”sat-

uration” study.

Various results related to the approximation of some classical functions and point

sets in the plane with various classes of sigmoidal functions in respect to the Hausdorff

distance and they find the application in different scientific fields, see for example [7]–

[15].
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