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ABSTRACT: In this paper we will consider the possibility of approximating the

input function s(t) in the differential model y′(t) = ky(t)s(t); y(t0) = y0 with the

Gupta–Kundu [7] type correction. We prove upper and lower estimates for the one–

sided Hausdorff approximation of the Heaviside step–function ht∗(t) by means of a

new logistic family. Numerical examples, illustrating our results are given.
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1. INTRODUCTION

Dynamical models consisting of a systems of ”reaction” differential equations are

commonly used in chemistry, there the differential equations are called reaction equa-

tions. In chemistry reaction differential equations are induced by chemical reactions

networks via reaction kinetic principles, such as mass action kinetics [1]–[4].
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In the present work we propose a new sigmoidal class of growth functions. We

prove upper and lower estimates for the one–sided Hausdorff approximation of the

Heaviside step–function ht∗(t) by means of a new logistic family.

The proposed model can be successfully used to approximating data from tu-

mor growth, epidemics, population dynamics, debugging theory and computer viruses

propagation theory.

2. PRELIMINARIES

Definition 1. The shifted Heaviside step function is defined by

ht∗(t) =























0, if t < t∗,

[0, 1], if t = t∗,

1, if t > t∗

(1)

Definition 2. [5], [6] The Hausdorff distance (the H–distance) ρ(f, g) between two

interval functions f, g on Ω ⊆ R, is the distance between their completed graphs F (f)

and F (g) considered as closed subsets of Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||}, (2)

wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB, xB) in R
2 is ||A−B|| =

max(|tA − tB |, |xA − xB|).

3. MAIN RESULTS.

3.1. A NEW LOGISTIC DIFFERENTIAL MODEL

In the case of continuous bioreactor, the nutrient supply is considered as an input

function s(t) as follows:
dy(t)

dt
= ky(t)s(t)
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Figure 1: The functions M(t)–(red) and s(t)–(green) for k = 10; α = 2.1; β =

2.9.

where s is additional specified.

In this Section we will consider the possibility of approximating the input function

s(t) with the Gupta–Kundu [7] type correction and study the following model:















dy(t)
dt

= ky(t)
1

α
e−βt

(

α+ 1− e−αβt
)

y(t0) = y0

(3)

where α, β > 0.

The general solution of the differential equation (3) is of the following form:

y(t) = y0e

e−(1+α)βtk

(

(−1−α)eαβt

β
+ 1

β(1+α)

)

α
−

e−(1+α)βt0 k

(

(−1−α)eαβt0
β

+ 1
β(1+α)

)

α . (4)

Without loss of generality, we consider the following class of this family for:

t0 = 0; y0 = e
k(−1−α

β
+ 1

β(1+α) )
α

M(t) = e

e−(1+α)βtk

(

(−1−α)eαβt

β
+ 1

β(1+α)

)

α . (5)

The function M(t) and the ”input function” s(t) are visualized on Fig. 1.

It is important to study the characteristic - ”super saturation” of the model to

the horizontal asymptote.
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Denoting by t∗ the unique positive solution of the nonlinear equation M(t∗) = 1
2 .

The one–sided Hausdorff distance d between the function ht∗(t) and the sigmoid

- (5) satisfies the relation

M(t∗ + d) = 1− d. (6)

The following theorem gives upper and lower bounds for d

Theorem. Let y0 < 1 and

p = − 1
2 ,

q = 1 + k
2e

−βt∗
(

1 + 1
α
− ke−βt∗(1+α)

(

1 + 1
1+α

+ 1
α(1+α)

))

γ = 2.1q.

(7)

For the one–sided Hausdorff distance d between ht∗(t) and the sigmoid (5) the

following inequalities hold for the condition - γ > e1.05:

dl =
1

γ
< d <

ln γ

γ
= dr. (8)

Proof. Let us examine the function:

F (d) = M(t∗ + d)− 1 + d. (9)

From F ′(d) > 0 we conclude that function F is increasing.

Consider the function

G(d) = p+ qd. (10)

From Taylor expansion we obtain G(d)− F (d) = O(d2).

Hence G(d) approximates F (d) with d → 0 as O(d2) (see Fig. 2).

In addition G′(d) > 0.

Further, for γ > e1.05 we have

G(dl) < 0; G(dr) > 0.

This completes the proof of the theorem.

Approximations of the ht∗(t) by model (5) for various k, α and β are visualized

on Fig. 3–Fig. 4.
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Figure 2: The functions F (d) and G(d) for k = 10; α = 2.1; β = 2.9.

Figure 3: The model (5) for k = 10; α = 2.1; β = 2.9; t∗ = 0.686988;

Hausdorff distance d = 0.271086; dl = 0.237892; dr = 0.341598.
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Figure 4: The model (5) for k = 28; α = 2.9; β = 7.6; t∗ = 0.258765;

Hausdorff distance d = 0.171563; dl = 0.131099; dr = 0.266368.

From the graphic it can be seen that the ”saturation” is faster.

3.2. APPROXIMATING THE ”GROWTH DATA (MEAN HEIGHT)

OF SUNFLOWER PLANTS”

We analyze experimental growth data (mean height) of sunflower plants (DSP) (see,

for example [10]):

data DSP

:= {{14, 36.4}, {28, 98.1}, {49, 205.5}, {56, 228.3}, {70, 250.5},

{84, 254.5}}.

For α = 0.12, β = 0.066, k = 0.122257 and ω = 273.67 we obtain the fitted model

M∗(t) = ωM(t) (see, Fig. 5).

4. CONCLUSION.

We will explicitly note that similar approximation and modeling results associated

with the use of ”input function” S(t) with weighted exponential Gompertz type cor-

rection [8]–[9]:
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Figure 5: The fitted model M∗(t).

S(t) = 1−
α+ 1

α

(

1− e−σ(eλt
−1)

)β

+
1

α

(

1− e−σ(eλt
−1)

)β(α+1)

can be obtained with the mathematical apparatus outlined in this chapter and here

we will miss them.

We propose a software module within the programming environment CAS Math-

ematica for the analysis of the considered family of functions.

For some recent results see [11]–[40].
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